Abstract
Snap-through buckling is commonly used in nature for power-amplified movements. While natural examples such as Utricularia and Dionaea muscipula can autonomously reset their snapping structures, bio-inspired analogues require external mediation for sequential snap events. Here we report the design principles for self-repeating, snap-based polymer jumping devices. Transient shape changes during the drying of a polymer gel are exploited to generate mechanical constraint and an internal driving force for snap-through buckling. Snap-induced shape changes alter environmental interactions to realize multiple, self-repeating snap events. The underlying mechanisms are understood through controlled experiments and numerical modelling. Using these lessons, we create snap-induced jumping devices with power density outputs (specific power ≈ 312 W kg−1) that are similar to high-performing jumping organisms and engineered robots. These results provide the demonstration of an autonomous, self-repeating, high-speed movement, marking an important advance in the development of environmental energy harvesting, high-power motion that is important for microscale robots and actuated devices.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The authors declare that data supporting the findings of this study are available within the paper and its supplementary information files. Additional data used in constructing plots and figures are available from UMass ScholarWorks (https://scholarworks.umass.edu/data/116).
References
Longo, S. J. et al. Beyond power amplification: latch-mediated spring actuation is an emerging framework for the study of diverse elastic systems. J. Exp. Biol. 222, jeb197889 (2019).
Ilton, M. et al. The principles of cascading power limits in small, fast biological and engineered systems. Science 360, eaao1082 (2018).
Gomez, M., Moulton, D. E. & Vella, D. Critical slowing down in purely elastic ‘snap-through’ instabilities. Nat. Phys. 13, 142–145 (2017).
Vangbo, M. An analytical analysis of a compressed bistable buckled beam. Sens. Actuators A Phys. 69, 212–216 (1998).
Sano, T. G. & Wada, H. Snap-buckling in asymmetrically constrained elastic strips. Phys. Rev. E 97, 013002 (2018).
Chen, D., Yoon, J., Chandra, D., Crosby, A. J. & Hayward, R. C. Stimuli-responsive buckling mechanics of polymer films. J. Polym. Sci. B Polym. Phys. 52, 1441–1461 (2014).
Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18, 24–28 (2019).
Keplinger, C., Li, T., Baumgartner, R., Suo, Z. & Bauer, S. Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8, 285–288 (2012).
Camescasse, B., Fernandes, A. & Pouget, J. Bistable buckled beam: elastica modeling and analysis of static actuation. Int. J. Solids Struct. 50, 2881–2893 (2013).
Pi, Y.-L. & Bradford, M. A. Nonlinear dynamic buckling of pinned-fixed shallow arches under a sudden central concentrated load. Nonlinear Dyn. 73, 1289–1306 (2013).
Gerbode, S. J., Puzey, J. R., McCormick, A. G. & Mahadevan, L. How the cucumber tendril coils and overwinds. Science 337, 1087–1091 (2012).
Erb, R. M., Sander, J. S., Grisch, R. & Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4, 1712 (2013).
Reyssat, E. & Mahadevan, L. Hygromorphs: from pine cones to biomimetic bilayers. J. R. Soc. Interface 6, 951–957 (2009).
Poppinga, S. et al. Biomechanical analysis of prey capture in the carnivorous Southern bladderwort (Utricularia australis). Sci. Rep. 7, 1776 (2017).
Skotheim, J. M. & Mahadevan, L. Physical limits and design principles for plant and fungal movements. Science 308, 1308–1310 (2005).
Poppinga, S., Weisskopf, C., Westermeier, A. S., Masselter, T. & Speck, T. Fastest predators in the plant kingdom: functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants. AoB Plants 8, plv140 (2016).
Holmes, D. P. & Crosby, A. J. Snapping surfaces. Adv. Mater. 19, 3589–3593 (2007).
Lee, H., Xia, C. & Fang, N. X. First jump of microgel; actuation speed enhancement by elastic instability. Soft Matter 6, 4342–4345 (2010).
Zhao, Q. et al. A bioinspired reversible snapping hydrogel assembly. Mater. Horiz. 3, 422–428 (2016).
Haldane, D. W., Plecnik, M. M., Yim, J. K. & Fearing, R. S. Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 1, eaag2048 (2016).
Hu, Y., Chen, X., Whitesides, G. M., Vlassak, J. J. & Suo, Z. Indentation of polydimethylsiloxane submerged in organic solvents. J. Mater. Res. 26, 785–795 (2011).
Smallwood, I. M. Handbook of Organic Solvent Properties (Butterworth-Heinemann, 2012).
Pandey, A., Moulton, D. E., Vella, D. & Holmes, D. P. Dynamics of snapping beams and jumping poppers. Europhys. Lett. 105, 24001 (2014).
Hong, W., Zhao, X., Zhou, J. & Suo, Z. A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56, 1779–1793 (2008).
Hong, W., Liu, Z. & Suo, Z. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int. J. Solids Struct. 46, 3282–3289 (2009).
Thomson, W. 4. On the equilibrium of vapour at a curved surface of liquid. Proc. R. Soc. Edinb. 7, 63–68 (1872).
Sutton, G. P., Doroshenko, M., Cullen, D. A. & Burrows, M. Take-off speed in jumping mantises depends on body size and a power-limited mechanism. J. Exp. Biol. 219, 2127–2136 (2016).
Olberding, J. P. & Deban, S. M. Effects of temperature and force requirements on muscle work and power output. J. Exp. Biol. 220, 2017–2025 (2017).
Acknowledgements
This material is based upon work supported by, or in part by, the US Army Research Laboratory and the US Army Research Office under contract/grant number W911NF-15-1-0358.
Author information
Authors and Affiliations
Contributions
Y.K. conceived and conducted the experiments, performed data analysis and contributed to the writing and editing of the manuscript. J.v.d.B. conducted experiments and performed data analysis. A.J.C. conceived experiments and contributed to the writing and editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Video Legends 1–8, Sections 1–3, Note 1, Figs. 1–6 and refs. 1–7.
Supplementary Video 1
Multiple, sequential snap-through transitions of a swollen polymer gel strip with one fixed end.
Supplementary Video 2
Multiple, sequential snap-through transitions of a swollen polymer gel strip on a PTFE substrate.
Supplementary Video 3
Multiple, sequential snap transitions of an externally constrained PDMS strip (h0 = 0.5 mm, w0 = 5 mm, L = 50 mm, ΔL = 10 mm)
Supplementary Video 4
High-speed video of a snapping shell (R0 = 4 mm, h0 = 0.6 mm, tprep = 40 s).
Supplementary Video 5
High-speed video of a snapping shell (R0 = 3 mm, h0 = 0.3 mm, tprep = 30 s) jumping on the copper mesh.
Supplementary Video 6
A snapping shell climbing down a slope.
Supplementary Video 7
Snapping shells climbing a ladder with a height of 8 cm.
Supplementary Video 8
Movie of finite element simulation of buckling induced during evaporative de-swelling of an initially swollen elastomer beam.
Rights and permissions
About this article
Cite this article
Kim, Y., van den Berg, J. & Crosby, A.J. Autonomous snapping and jumping polymer gels. Nat. Mater. 20, 1695–1701 (2021). https://doi.org/10.1038/s41563-020-00909-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-020-00909-w