Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography


Despite progress in solid-state battery engineering, our understanding of the chemo-mechanical phenomena that govern electrochemical behaviour and stability at solid–solid interfaces remains limited compared to at solid–liquid interfaces. Here, we use operando synchrotron X-ray computed microtomography to investigate the evolution of lithium/solid-state electrolyte interfaces during battery cycling, revealing how the complex interplay among void formation, interphase growth and volumetric changes determines cell behaviour. Void formation during lithium stripping is directly visualized in symmetric cells, and the loss of contact that drives current constriction at the interface between lithium and the solid-state electrolyte (Li10SnP2S12) is quantified and found to be the primary cause of cell failure. The interphase is found to be redox-active upon charge, and global volume changes occur owing to partial molar volume mismatches at either electrode. These results provide insight into how chemo-mechanical phenomena can affect cell performance, thus facilitating the development of solid-state batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Operando X-ray imaging of cells at two current densities.
Fig. 2: Analysis of interphase growth and electrochemical behaviour.
Fig. 3: Evolution of voids at the Li/LSPS interface.
Fig. 4: Relating interfacial contact area to cell electrochemistry.
Fig. 5: Displacements and volume changes within a cell.

Data availability

Source data are provided with this paper. All other data that support results in this Article are available from the corresponding author upon reasonable request.

Code availability

MATLAB codes developed for segmentation and analysis of tomographic data in this paper are available from the corresponding author upon reasonable request.


  1. 1.

    Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    CAS  Google Scholar 

  2. 2.

    Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    CAS  Google Scholar 

  3. 3.

    Tan, D. H. S., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020).

    CAS  Google Scholar 

  4. 4.

    Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Google Scholar 

  5. 5.

    Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

    CAS  Google Scholar 

  6. 6.

    Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Trends Chem. 1, 845–857 (2019).

    CAS  Google Scholar 

  7. 7.

    Xiao, Y. et al. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020).

    CAS  Google Scholar 

  8. 8.

    Hatzell, K. B. et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 5, 922–934 (2020).

    CAS  Google Scholar 

  9. 9.

    Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    CAS  Google Scholar 

  10. 10.

    Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    CAS  Google Scholar 

  11. 11.

    Ong, S. P. et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013).

    CAS  Google Scholar 

  12. 12.

    Wenzel, S. et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).

    CAS  Google Scholar 

  13. 13.

    Lewis, J. A. et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591–599 (2019).

    CAS  Google Scholar 

  14. 14.

    Wenzel, S. et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion. 286, 24–33 (2016).

    CAS  Google Scholar 

  15. 15.

    Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).

    CAS  Google Scholar 

  16. 16.

    Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017).

    CAS  Google Scholar 

  17. 17.

    Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Google Scholar 

  18. 18.

    Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    CAS  Google Scholar 

  19. 19.

    Kazyak, E. et al. Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2, 1025–1048 (2020).

    Google Scholar 

  20. 20.

    Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020).

    CAS  Google Scholar 

  21. 21.

    Zhang, W. et al. (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J. Mater. Chem. A 5, 9929–9936 (2017).

    CAS  Google Scholar 

  22. 22.

    Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

    CAS  Google Scholar 

  23. 23.

    Tippens, J. et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4, 1475–1483 (2019).

    CAS  Google Scholar 

  24. 24.

    Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    CAS  Google Scholar 

  25. 25.

    Wang, M. J., Choudhury, R. & Sakamoto, J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 3, 2165–2178 (2019).

    CAS  Google Scholar 

  26. 26.

    Pietsch, P. & Wood, V. X-ray tomography for lithium ion battery research: a practical guide. Annu. Rev. Mater. Res. 47, 451–479 (2017).

    CAS  Google Scholar 

  27. 27.

    Lin, F. et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 117, 13123–13186 (2017).

    CAS  Google Scholar 

  28. 28.

    Shen, F., Dixit, M. B., Xiao, X. & Hatzell, K. B. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett. 3, 1056–1061 (2018).

    CAS  Google Scholar 

  29. 29.

    Dixit, M. B. et al. Nanoscale mapping of extrinsic interfaces in hybrid solid electrolytes. Joule 4, 207–221 (2020).

    CAS  Google Scholar 

  30. 30.

    Wu, X. et al. Operando visualization of morphological dynamics in all-solid-state batteries. Adv. Energy Mater. 9, 1901547 (2019).

    Google Scholar 

  31. 31.

    Sun, F. et al. Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li–S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction. J. Mater. Chem. A 6, 22489–22496 (2018).

    CAS  Google Scholar 

  32. 32.

    Kimura, Y. et al. Influence of active material loading on electrochemical reactions in composite solid-state battery electrodes revealed by operando 3D CT-XANES imaging. ACS Appl. Energy Mater. 3, 7782–7793 (2020).

    CAS  Google Scholar 

  33. 33.

    Dixit, M. B. et al. Synchrotron imaging of pore formation in Li metal solid-state batteries aided by machine learning. ACS Appl. Energy Mater. (2020).

    Article  Google Scholar 

  34. 34.

    Seitzman, N. et al. Toward all-solid-state lithium batteries: three-dimensional visualization of lithium migration in β-Li3PS4 ceramic electrolyte. J. Electrochem. Soc. 165, A3732 (2018).

    CAS  Google Scholar 

  35. 35.

    Doux, J. M. et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2020).

    CAS  Google Scholar 

  36. 36.

    Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    CAS  Google Scholar 

  37. 37.

    Madsen, K. et al. Direct observation of interfacial mechanical failure in thiophosphate solid electrolytes with operando X‐ray tomography. Adv. Mater. Interfaces 7, 2000751 (2020).

    CAS  Google Scholar 

  38. 38.

    Dixit, M. et al. In situ investigation of chemomechanical effects in thiophosphate solid electrolytes. Matter (2020).

    Article  Google Scholar 

  39. 39.

    Jolly, D. S. et al. Sodium/Na β″ alumina interface: effect of pressure on voids. ACS Appl. Mater. Interfaces 12, 678–685 (2019).

    Google Scholar 

  40. 40.

    Neumann, A. et al. Analysis of interfacial effects in all-solid-state batteries with thiophosphate solid electrolytes. ACS Appl. Mater. Interfaces 12, 9277–9291 (2020).

    CAS  Google Scholar 

  41. 41.

    Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).

    CAS  Google Scholar 

  42. 42.

    Tarhouchi, I., Viallet, V., Vinatier, P. & Ménétrier, M. Electrochemical characterization of Li10SnP2S12: an electrolyte or a negative electrode for solid state Li-ion batteries? Solid State Ion. 296, 18–25 (2016).

    CAS  Google Scholar 

  43. 43.

    Zheng, B. et al. Unraveling (electro)-chemical stability and interfacial reactions of Li10SnP2S12 in all-solid-state Li batteries. Nano Energy 67, 104252 (2020).

    CAS  Google Scholar 

  44. 44.

    Cortes, F. J. Q., Lewis, J. A., Tippens, J., Marchese, T. S. & McDowell, M. T. How metallic protection layers extend the lifetime of NASICON-based solid-state lithium batteries. J. Electrochem. Soc. 167, 050502 (2020).

    CAS  Google Scholar 

  45. 45.

    Han, F., Gao, T., Zhu, Y., Gaskell, K. J. & Wang, C. A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015).

    CAS  Google Scholar 

  46. 46.

    Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries – an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463–14477 (2019).

    CAS  Google Scholar 

  47. 47.

    Greenwood, J. A. Constriction resistance and the real area of contact. Brit. J. Appl. Phys. 17, 1621–1632 (1966).

    CAS  Google Scholar 

  48. 48.

    Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    CAS  Google Scholar 

  49. 49.

    Ahmad, Z. & Viswanathan, V. Stability of electrodeposition at solid–solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119, 056003 (2017).

    Google Scholar 

  50. 50.

    Mistry, A. & Mukherjee, P. P. Molar volume mismatch: a malefactor for irregular metallic electrodeposition with solid electrolytes. J. Electrochem. Soc. 167, 082510 (2020).

    CAS  Google Scholar 

  51. 51.

    Gürsoy, D., de Carlo, F., Xiao, X. & Jacobsen, C. TomoPy: a framework for the analysis of synchrotron tomographic data. J. Synch. Radiat. 21, 1188–1193 (2014).

    Google Scholar 

Download references


This work is partially supported by the National Science Foundation under Award No. DMR-1652471. M.T.M. acknowledges support from a Sloan Research Fellowship in Chemistry from the Alfred P. Sloan Foundation. J.A.L. acknowledges support from a NASA Space Technology Research Fellowship. F.J.Q.C. acknowledges support from the Colciencias-Fulbright scholarship programme cohort 2016. C.L. and H.L. acknowledge support from the Ministry of Trade, Industry & Energy/Korea Institute of Energy Technology Evaluation and Planning (MOTIE/KETEP) (20194010000100). A portion of this work is supported by the Air Force Office of Scientific Research (AFOSR) under Grant FA9550-17-1-0130. P.P.M. acknowledges financial support from a Scialog programme sponsored jointly by the Research Corporation for Science Advancement and the Alfred P. Sloan Foundation, which includes a grant to Purdue University by the Alfred P. Sloan Foundation. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information




M.T.M., J.A.L. and F.J.Q.C. conceived the study. J.A.L., F.J.Q.C., Y.L. and T.S.M. conducted the operando X-ray tomography experiments. J.A.L., J.C.M. and J.T. designed and tested the cell housings, with C.S. guiding the preliminary imaging experiments. J.A.L. and D.P. conducted the preliminary ex situ cycling experiments. S.Y.H. and C.L. developed pressure measurements for the cell housings. P.P.S. created the three-dimensional renderings. F.D.C. and P.S. assisted with the use of beamline 2-BM and reconstruction processing. A.V., B.S.V. and P.P.M. developed the electrochemical model. J.A.L. and F.J.Q.C. segmented and analysed the data, and also wrote the manuscript with M.T.M. All authors commented on the manuscript.

Corresponding author

Correspondence to Matthew T. McDowell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Ying Meng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, methods and refs 1 and 2.

Source data

Source Data Fig. 1

Numerical data for plots in Fig. 1.

Source Data Fig. 2

Numerical data for plots in Fig. 2.

Source Data Fig. 4

Numerical data for plots in Fig. 4.

Source Data Fig. 5

Numerical data for plot in Fig. 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lewis, J.A., Cortes, F.J.Q., Liu, Y. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing