Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous organization of supracolloids into three-dimensional structured materials


Periodic nano- or microscale structures are used to control light, energy and mass transportation. Colloidal organization is the most versatile method used to control nano- and microscale order, and employs either the enthalpy-driven self-assembly of particles at a low concentration or the entropy-driven packing of particles at a high concentration. Nonetheless, it cannot yet provide the spontaneous three-dimensional organization of multicomponent particles at a high concentration. Here we combined these two concepts into a single strategy to achieve hierarchical multicomponent materials. We tuned the electrostatic attraction between polymer and silica nanoparticles to create dynamic supracolloids whose components, on drying, reorganize by entropy into three-dimensional structured materials. Cryogenic electron tomography reveals the kinetic pathways, whereas Monte Carlo simulations combined with a kinetic model provide design rules to form the supracolloids and control the kinetic pathways. This approach may be useful to fabricate hierarchical hybrid materials for distinct technological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and self-assembly of the supracolloids.
Fig. 2: Electron microscopy analysis of the macroscopic materials.
Fig. 3: Analysis of the supracolloid 3D organization by cryoET.
Fig. 4: Modelling and optimization of the colloidal organization process.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and Supplementary Information files and from the corresponding authors upon reasonable request (see ‘Author contributions’ for the specific datasets). Source data are provided with this paper.

Code availability

Code for the analysis of the tomographic reconstructions is available from M.-A.M. upon request. Code for the Monte Carlo simulations is available from M.D. upon request. Code for the population balance modelling is available from A.F.R. upon request.


  1. O’Brien, M. N., Jones, M. R. & Mirkin, C. A. The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proc. Natl Acad. Sci. USA 113, 11717–11725 (2016).

    Article  Google Scholar 

  2. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  Google Scholar 

  3. Vogel, N., Retsch, M., Fustin, C. A., Del Campo, A. & Jonas, U. Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. Chem. Rev. 115, 6265–6311 (2015).

    Article  CAS  Google Scholar 

  4. Gerth, M. & Voets, I. K. Molecular control over colloidal assembly. Chem. Commun. 53, 4414–4428 (2017).

    Article  CAS  Google Scholar 

  5. Elacqua, E., Zheng, X., Shillingford, C., Liu, M. & Weck, M. Molecular recognition in the colloidal world. Acc. Chem. Res. 50, 2756–2766 (2017).

    Article  CAS  Google Scholar 

  6. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article  CAS  Google Scholar 

  7. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  Google Scholar 

  8. Hueckel, T., Hocky, G. M., Palacci, J. & Sacanna, S. Ionic solids from common colloids. Nature 580, 487–490 (2020).

    Article  CAS  Google Scholar 

  9. Ben Zion, M. Y. et al. Self-assembled three-dimensional chiral colloidal architecture. Science 358, 633–636 (2017).

    Article  Google Scholar 

  10. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  11. Hynninen, A. P., Christova, C. G., van Roij, R., van Blaaderen, A. & Dijkstra, M. Prediction and observation of crystal structures of oppositely charged colloids. Phys. Rev. Lett. 96, 138308 (2006).

    Article  Google Scholar 

  12. Frenkel, D. & Ladd, A. J. C. New Monte-Carlo method to compute the free-energy of arbitrary solids—application to the FCC and HCP phases of hard-spheres. J. Chem. Phys. 81, 3188–3193 (1984).

    Article  CAS  Google Scholar 

  13. van Blaaderen, A., Ruel, R. & Wiltzius, P. Template-directed colloidal crystallization. Nature 385, 321–324 (1997).

    Article  Google Scholar 

  14. de Nijs, B. et al. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement. Nat. Mater. 14, 56–60 (2015).

    Article  Google Scholar 

  15. Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004).

    Article  CAS  Google Scholar 

  16. Ungar, G., Liu, Y., Zeng, X., Percec, V. & Cho, W. D. Giant supramolecular liquid crystal lattice. Science 299, 1208–1211 (2003).

    Article  CAS  Google Scholar 

  17. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article  CAS  Google Scholar 

  18. Lenz, M. & Witten, T. A. Geometrical frustration yields fiber formation in self-assembly. Nat. Phys. 13, 110–1104 (2017).

    Article  Google Scholar 

  19. Wang, P. Y. & Mason, T. G. A Brownian quasi-crystal of pre-assembled colloidal Penrose tiles. Nature 561, 94–99 (2018).

    Article  CAS  Google Scholar 

  20. Lee, S., Bluemle, M. J. & Bates, F. S. Discovery of a Frank–Kasper sigma phase in sphere-forming block copolymer melts. Science 330, 349–353 (2010).

    Article  CAS  Google Scholar 

  21. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  22. de Graaf, J., van Roij, R. & Dijkstra, M. Dense regular packings of irregular nonconvex particles. Phys. Rev. Lett. 107, 155501 (2011).

    Article  Google Scholar 

  23. Dijkstra, M. Entropy-driven phase transitions in colloids: from spheres to anisotropic particles. Adv. Chem. Phys. 156, 35–71 (2015).

    CAS  Google Scholar 

  24. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

    Article  CAS  Google Scholar 

  25. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  26. Kim, M. H., Im, S. H. & Park, O. O. Fabrication and structural analysis of binary colloidal crystals with two-dimensional superlattices. Adv. Mater. 17, 2501–2505 (2005).

    Article  CAS  Google Scholar 

  27. Friedrich, H. et al. Quantitative structural analysis of binary nanocrystal superlattices by electron tomography. Nano Lett. 9, 2719–2724 (2009).

    Article  CAS  Google Scholar 

  28. Evers, W. H. et al. Entropy-driven formation of binary semiconductor–nanocrystal superlattices. Nano Lett. 10, 4235–4241 (2010).

    Article  CAS  Google Scholar 

  29. Evers, W. H., Friedrich, H., Filion, L., Dijkstra, M. & Vanmaekelbergh, D. Observation of a ternary nanocrystal superlattice and its structural characterization by electron tomography. Angew. Chem. Int. Ed. 48, 9655–9657 (2009).

    Article  CAS  Google Scholar 

  30. Singh, G., Pillai, S., Arpanaei, A. & Kingshott, P. Layer-by-layer growth of multicomponent colloidal crystals over large areas. Adv. Funct. Mater. 21, 2556–2563 (2011).

    Article  CAS  Google Scholar 

  31. Subramanian, G., Manoharan, V. N., Thorne, J. D. & Pine, D. J. Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials. Adv. Mater. 11, 1261–1265 (1999).

    Article  CAS  Google Scholar 

  32. Subramania, G., Constant, K., Biswas, R., Sigalas, M. M. & Ho, K.-M. Optical photonic crystals fabricated from colloidal systems. Appl. Phys. Lett. 74, 3933–3935 (1999).

    Article  CAS  Google Scholar 

  33. Chai, G. S., Shin, I. S. & Yu, J.-S. Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Adv. Mater. 16, 2057–2061 (2004).

    Article  CAS  Google Scholar 

  34. Meng, Q. B. et al. Assembly of highly ordered three-dimensional porous structure with nanocrystalline TiO2 semiconductors. Chem. Mater. 14, 83–88 (2002).

    Article  CAS  Google Scholar 

  35. Cho, Y.-S. et al. Self-organization of bidisperse colloids in water droplets. J. Am. Chem. Soc. 127, 15968–15975 (2005).

    Article  CAS  Google Scholar 

  36. Chen, Q. et al. Supracolloidal Reaction Kinetics of Janus Spheres. Science 331, 199–202 (2011).

    Article  CAS  Google Scholar 

  37. Hsiao, L. C. & Pradeep, S. Experimental synthesis and characterization of rough particles for colloidal and granular rheology. Curr. Opin. Colloid Interface Sci. 43, 94–112 (2019).

    Article  CAS  Google Scholar 

  38. Harley, S., Thompson, D. W. & Vincent, B. The adsorption of small particles onto larger particles of opposite charge. Direct electron microscope studies. Colloids Surf. 62, 163–176 (1992).

    Article  CAS  Google Scholar 

  39. De Silva Indrasekara, A. S. et al. Tailoring the core–satellite nanoassembly architectures by tuning internanoparticle electrostatic interactions. Langmuir 34, 14617–14623 (2018).

    Article  CAS  Google Scholar 

  40. Patterson, J. P., Xu, Y., Moradi, M. A., Sommerdijk, N. & Friedrich, H. CryoTEM as an advanced analytical tool for materials chemists. Acc. Chem. Res. 50, 1495–1501 (2017).

    Article  CAS  Google Scholar 

  41. Evans, J. W. Random and cooperative sequential adsorption. Rev. Mod. Phys. 65, 1281–1329 (1993).

    Article  CAS  Google Scholar 

  42. Manoharan, V. N. Colloidal matter: packing, geometry, and entropy. Science 349, 1253751 (2015).

    Article  Google Scholar 

  43. Bausch, A. R. et al. Grain boundary scars and spherical crystallography. Science 299, 1716–1718 (2003).

    Article  CAS  Google Scholar 

  44. Guerra, R. E., Kelleher, C. P., Hollingsworth, A. D. & Chaikin, P. M. Freezing on a sphere. Nature 554, 346 (2018).

    Article  CAS  Google Scholar 

  45. Keddie, J. & Routh, A. F. Fundamentals of Latex Film Formation: Processes and Properties. Springer Science & Business Media, (2010).

  46. Verwey, E. J. Theory of the stability of lyophobic colloids. J. Phys. Colloid Chem. 51, 631–636 (1947).

    Article  CAS  Google Scholar 

  47. Derjaguin, B. & Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged-particles in solutions of electrolytes. Prog. Surf. Sci. 43, 30–59 (1993).

    Article  Google Scholar 

  48. Cong, H. & Yu, B. Fabrication of superparamagnetic macroporous Fe3O4 and its derivates using colloidal crystals as templates. J. Colloid Interface Sci. 353, 131–136 (2011).

    Article  CAS  Google Scholar 

  49. Robbins, M. O., Kremer, K. & Grest, G. S. Phase-diagram and dynamics of Yukawa systems. J. Chem. Phys. 88, 3286–3312 (1988).

    Article  CAS  Google Scholar 

  50. Mansfield, M. L. The random parking of spheres on spheres. J. Chem. Phys. 105, 3245 (1996).

    Article  CAS  Google Scholar 

  51. Yokoi, T. et al. Periodic arrangement of silica nanospheres assisted by amino acids. J. Am. Chem. Soc. 128, 13664–13665 (2006).

    Article  CAS  Google Scholar 

  52. Carcouët, C. C. M. C. et al. Nucleation and growth of monodisperse silica nanoparticles. Nano Lett. 14, 1433–1438 (2014).

    Article  Google Scholar 

  53. Pham, K. N., Fullston, D. & Sagoe-Crentsil, K. Surface charge modification of nano-sized silica colloid. Aust. J. Chem. 60, 662–666 (2007).

    Article  CAS  Google Scholar 

  54. McKenzie, B. E. et al. Controlling internal pore sizes in bicontinuous polymeric nanospheres. Angew. Chem. Int. Ed. Engl. 54, 2457–2461 (2015).

    Article  CAS  Google Scholar 

Download references


We thank I. Schreur-Piet (Eindhoven University of Technology) for her help with the FIB/SEM TEM lamella sample preparation and P. Bomans (Eindhoven University of Technology) for his support with the CryoTEM. E.D.E. and M.C. were supported by the EU H2020 Marie Sklodowska-Curie Action project ‘MULTIMAT’. J.P.P. and M.-A.M. were supported by the 4TU High-Tech Materials research programme ‘New Horizons in Designer Materials’.

Author information

Authors and Affiliations



N.S., H.F., M.-A.M., E.D.E. and J.P.P. conceived and designed the experiments. M.-A.M. and E.D.E. carried out the supracolloid assembly experiments. M.-A.M. carried out the cryoTEM and cryoET analysis. E.D.E. carried out the SEM analyses and FIB experiments. M.D. supervised the simulation study and M.C. carried out the computer simulations. S.R. carried out the silica functionalization and some of the drying experiments. H.F. supervised the data analysis and M.-A.M., E.D.E., M.G. and A.D.A.K. carried out the data analysis. M.M.J.v.R. synthesized the SNPs. A.F.R. created the kinetic model. N.A.J.M.S., G.d.W., H.F. and J.P.P. supervised the project. J.P.P. wrote the manuscript and M.-A.M., E.D.E. and G.d.W. wrote the Supplementary Information, with contributions from all the authors. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Nico Sommerdijk, Heiner Friedrich or Joseph P. Patterson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Dganit Danino, Oleg Gang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, discussion, Figs. 1–20 and Tables 1–4.

Supplementary Video 1

Electron tomography of the internal structure of the SNP/PSL hybrid material.

Supplementary Video 2

Simulation of the SNP/PSL supracolloid formation.

Supplementary Video 3

Electron tomography of the supracolloids.

Supplementary Video 4

Electron tomography of a part of the clustered supracolloids.

Supplementary Video 5

Electron tomography of a cluster of supracolloids.

Supplementary Video 6

Electron tomography of repelling supracolloids in high concentration.

Supplementary Video 7

Overview image reconstruction of the repelling supracolloids.

Source data

Source Data Fig. 1

Zeta potential measurements and SNP particles per PSL graph.

Source Data Fig. 2

Unprocessed source SEM images, FFT results, and Avizo reconstructions of end material.

Source Data Fig. 3

XYZ coordinates of the SNPs in supracolloids extracted from cryoET.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, MA., Eren, E.D., Chiappini, M. et al. Spontaneous organization of supracolloids into three-dimensional structured materials. Nat. Mater. 20, 541–547 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing