Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5

Abstract

Dissipationless currents from topologically protected states are promising for disorder-tolerant electronics and quantum computation. Here, we photogenerate giant anisotropic terahertz nonlinear currents with vanishing scattering, driven by laser-induced coherent phonons of broken inversion symmetry in a centrosymmetric Dirac material ZrTe5. Our work suggests that this phononic terahertz symmetry switching leads to formation of Weyl points, whose chirality manifests in a transverse, helicity-dependent current, orthogonal to the dynamical inversion symmetry breaking axis, via circular photogalvanic effect. The temperature-dependent topological photocurrent exhibits several distinct features: Berry curvature dominance, particle–hole reversal near conical points and chirality protection that is responsible for an exceptional ballistic transport length of ~10 μm. These results, together with first-principles modelling, indicate two pairs of Weyl points dynamically created by B1u phonons of broken inversion symmetry. Such phononic terahertz control breaks ground for coherent manipulation of Weyl nodes and robust quantum transport without application of static electric or magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Giant anisotropic shift current induced by broken IS phonons induced by light.
Fig. 2: Helicity-dependent photocurrent and its temperature dependence.
Fig. 3: Coherent transport of topological photocurrent with vanishing scattering.
Fig. 4: Simulations of light-induced WPs by exciting the coherent B1u mode.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support results in this Article are available from the corresponding authors upon reasonable request.

References

  1. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article  Google Scholar 

  2. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  CAS  Google Scholar 

  3. Chan, C.-K., Lindner, N. H., Refael, G. & Lee, P. A. Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104(R) (2017).

    Article  Google Scholar 

  4. Vaswani, C. et al. Terahertz second-harmonic generation from lightwave acceleration of symmetry-breaking nonlinear supercurrents. Phys. Rev. Lett. 124, 207003 (2020).

    Article  CAS  Google Scholar 

  5. Hubener, H., Sentef, M. A., Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2017).

    Article  CAS  Google Scholar 

  6. Wang, L.-L. et al. Phonon-induced topological transition to a type-II Weyl semimetal. Phys. Rev. B 95, 165114 (2017).

    Article  Google Scholar 

  7. Yang, X. et al. Lightwave-driven gapless superconductivity and forbidden quantum beats by terahertz symmetry breaking. Nat. Photon. 13, 707–713 (2019).

    Article  CAS  Google Scholar 

  8. Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396–400 (2018).

    Article  CAS  Google Scholar 

  9. Dekorsy, T., Cho, G. C. & Kurz, H. in Light Scattering in Solids VIII (eds Cardona, M. & Güntherodt, G.) 169–209 (Springer, 2000).

  10. Yang, X. et al. Light control of surface–bulk coupling by terahertz vibrational coherence in a topological insulator. npj Quantum Mater. 5, 13 (2020).

    Article  CAS  Google Scholar 

  11. Liu, Z. et al. Ultrafast control of excitonic Rashba fine structure by phonon coherence in the metal halide perovskite CH3NH3PbI3. Phy. Rev. Lett. 124, 157401 (2020).

    Article  CAS  Google Scholar 

  12. Sanders, G. D. et al. Theory of carrier dynamics and time resolved reflectivity in InxMn1−xAs/GaSb heterostructures. Phys. Rev. B 72, 245302 (2005).

    Article  Google Scholar 

  13. Liu, Z. et al. Coherent band-edge oscillations and dynamic longitudinal-optical phonon mode splitting as evidence for polarons in perovskites. Phys. Rev. B 101, 115125 (2020).

    Article  CAS  Google Scholar 

  14. Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

    Article  Google Scholar 

  15. Weng, H., Dai, X. & Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: a paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 4, 011002 (2014).

    Google Scholar 

  16. Tang, F. et al. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature 569, 537–541 (2019).

    Article  CAS  Google Scholar 

  17. Chen, Z.-G. et al. Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5. Proc. Natl Acad. Sci. USA 114, 816–821 (2017).

    Article  CAS  Google Scholar 

  18. Chi, H. et al. Lifshitz transition mediated electronic transport anomaly in bulk ZrTe5. New J. Phys. 19, 015005 (2017).

    Article  Google Scholar 

  19. Xu, B. et al. Temperature-driven topological phase transition and intermediate Dirac semimetal phase in ZrTe5. Phys. Rev. Lett. 121, 187401 (2018).

    Article  CAS  Google Scholar 

  20. Mutch, J. et al. Evidence for a strain-tuned topological phase transition in ZrTe5. Sci. Adv. 5, eaav9771 (2019).

    Article  CAS  Google Scholar 

  21. Vaswani, C. et al. Light-driven Raman coherence as a nonthermal route to ultrafast topology switching in a Dirac semimetal. Phys. Rev. X 10, 021013 (2020).

    CAS  Google Scholar 

  22. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article  CAS  Google Scholar 

  23. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    Article  CAS  Google Scholar 

  24. Yang, X. et al. Ultrafast nonthermal terahertz electrodynamics and possible quantum energy transfer in the Nb3Sn superconductor. Phys. Rev. B 99, 094504 (2018).

    Article  Google Scholar 

  25. Braun, L. et al. Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3. Nat. Commun. 7, 13259 (2016).

    Article  CAS  Google Scholar 

  26. Sirica, N. et al. Tracking ultrafast photocurrents in the Weyl semimetal TaAs using THz emission spectroscopy. Phys. Rev. Lett. 122, 197401 (2019).

    Article  CAS  Google Scholar 

  27. Cheng, D. et al. Helicity-dependent terahertz photocurrent and phonon dynamics in hybrid metal halide perovskites. J. Chem. Phys. 151, 244706 (2019).

    Article  CAS  Google Scholar 

  28. Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

    Article  CAS  Google Scholar 

  29. Takeno, H., Saito, S. & Mizoguchi, K. Optical control of spin-polarized photocurrent in topological insulator thin films. Sci. Rep. 8, 15392 (2018).

    Article  Google Scholar 

  30. Zhu, L.-G., Kubera, B., Mak, K. F. & Shan, J. Effect of surface states on terahertz emission from the Bi2Se3 surface. Sci. Rep. 5, 10308 (2015).

    Article  CAS  Google Scholar 

  31. Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  Google Scholar 

  32. Mclver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).

    Article  Google Scholar 

  33. Ji, Z. et al. Spatially dispersive circular photogalvanic effect in a Weyl semimetal. Nat. Mater. 18, 955–962 (2019).

    Article  CAS  Google Scholar 

  34. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  CAS  Google Scholar 

  35. Luo, L. et al. Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014).

    Article  Google Scholar 

  36. Luo, L. et al. Ultrafast manipulation of topologically enhanced surface transport driven by mid-infrared and terahertz pulses in Bi2Se3. Nat. Commun. 10, 607 (2019).

    Article  CAS  Google Scholar 

  37. Yang, X. et al. Nonequilibrium pair breaking in Ba(Fe1−xCox)2As2 superconductors: evidence for formation of a photoinduced excitonic state. Phys. Rev. Lett. 121, 267001 (2018).

    Article  CAS  Google Scholar 

  38. Yang, X. et al. Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity. Nat. Mater. 17, 586–591 (2018).

    Article  CAS  Google Scholar 

  39. Bloembergen, N. & Pershan, P. S. Light waves at the boundary of nonlinear media. Phys. Rev. 128, 606–622 (1962).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ames Laboratory, the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division under contract no. DEAC0207CH11358 (project planning, photocurrent and pump–probe spectroscopy experiment and model building). Sample development and magneto-transport measurements in Brookhaven National Laboratory (Q.L., P.M.L., G.G.) were supported by the US Department of Energy, Office of Basic Energy Science, Materials Sciences and Engineering Division, under contract no. DE-SC0012704. I.E.P. at the University of Alabama, Birmingham was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0019137 (data analysis). L.-L.W. (first-principles calculations and topological analysis) was supported by Center for the Advancement of Topological Semimetals, an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences. Terahertz instrument was supported in part by National Science Foundation 1905981.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and D.C. performed the THz spectroscopy and photocurrent measurements. Q.L. planned the sample development, transport characterizations and data analysis with G.G. and P.M.L.; B.S. developed the photocurrent model and performed simulations with the help of J.W. and I.E.P.; L.-L.W. performed first-principles DFT calculations. J.W. and L.L. analysed the spectroscopy data with the input of C.V., C.H., R.H.J.K., J.-M.P., Y.Y. and K.H. The paper is written by J.W. and Q.L. with discussions from all authors. J.W. conceived and supervised the project.

Corresponding authors

Correspondence to Qiang Li or Jigang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Adolfo Grushin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–7 and refs. 1–12.

Source data

Source Data Fig. 1

Raw numerical data for Fig. 1.

Source Data Fig. 2

Raw numerical data for Fig. 2.

Source Data Fig. 3

Raw numerical data for Fig. 3.

Source Data Fig. 4

Raw numerical data for Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Cheng, D., Song, B. et al. A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5. Nat. Mater. 20, 329–334 (2021). https://doi.org/10.1038/s41563-020-00882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00882-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing