Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning surface d bands with bimetallic electrodes to facilitate electron transport across molecular junctions

Abstract

Understanding chemical bonding and conductivity at the electrode–molecule interface is key for the operation of single-molecule junctions. Here we apply the d-band theory that describes interfacial interactions between adsorbates and transition metal surfaces to study electron transport across these devices. We realized bimetallic Au electrodes modified with a monoatomic Ag adlayer to connect α,ω-alkanoic acids (HO2C(CH2)nCO2H). The force required to break the molecule–electrode binding and the contact conductance Gn=0 are 1.1 nN and 0.29 G0 (the conductance quantum, 1 G0 = 2e2/h ≈ 77.5 μS), which makes these junctions, respectively, 1.3–1.8 times stronger and 40–60-fold more conductive than junctions with bare Au or Ag electrodes. A similar performance was found for Au electrodes modified by Cu monolayers. By integrating the Newns–Anderson model with the Hammer–Nørskov d-band model, we explain how the surface d bands strengthen the adsorption and promote interfacial electron transport, which provides an alternative avenue for the optimization of molecular electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed improvement of ELA by narrow surface d bands.
Fig. 2: Junction conductance of bimetallic UPD electrodes.
Fig. 3: Effect of UPD-modified electrodes on iVbias characteristics.
Fig. 4: Derivations of transmission spectrum for AgUPD junction.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The algorithm that was used to calculate the quantum transport properties is available from the corresponding author upon reasonable request.

References

  1. Jia, C. & Guo, X. Molecule–electrode interfaces in molecular electronic devices. Chem. Soc. Rev. 42, 5642–5660 (2013).

    Article  CAS  Google Scholar 

  2. Huang, M.-J. et al. Conductance of tailored molecular segments: a rudimentary assessment by Landauer formulation. J. Am. Chem. Soc. 136, 1832–1841 (2014).

    Article  CAS  Google Scholar 

  3. Karthäuser, S. Control of molecule-based transport for future molecular devices. J. Phys. Condens. Matter 23, 013001 (2011).

    Article  Google Scholar 

  4. Sun, L. et al. Single-molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43, 7378–7411 (2014).

    Article  CAS  Google Scholar 

  5. Hammer, B. & Nørskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238 (1995).

    Article  CAS  Google Scholar 

  6. Zhao, Z.-J. et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 4, 792–804 (2019).

    Article  Google Scholar 

  7. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  Google Scholar 

  8. Ross, M. B. et al. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J. Am. Chem. Soc. 139, 9359–9363 (2017).

    Article  CAS  Google Scholar 

  9. Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    Article  Google Scholar 

  10. Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    Article  CAS  Google Scholar 

  11. Newns, D. M. Self-consistent model of hydrogen chemisorption. Phys. Rev. 178, 1123–1135 (1969).

    Article  CAS  Google Scholar 

  12. Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  13. Vojvodic, A., Nørskov, J. K. & Abild-Pedersen, F. Electronic structure effects in transition metal surface chemistry. Top. Catal. 57, 25–32 (2014).

    Article  CAS  Google Scholar 

  14. Rodriguez, J. A. Physical and chemical properties of bimetallic surfaces. Surf. Sci. Rep. 24, 223–287 (1996).

    Article  CAS  Google Scholar 

  15. Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).

    Article  CAS  Google Scholar 

  16. Herrero, E., Buller, L. J. & Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).

    Article  CAS  Google Scholar 

  17. Chen, I-W. P., Chen, C.-C., Lin, S.-Y. & Chen, C.-h. Effect of underpotentially deposited adlayers on sulfur bonding schemes of organothiols self-assembled on polycrystalline gold: sp or sp3 hybridization. J. Phys. Chem. B 108, 17497–17504 (2004).

    Article  CAS  Google Scholar 

  18. Chen, F., Li, X., Hihath, J., Huang, Z. & Tao, N. J. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 15874–15881 (2006).

    Article  CAS  Google Scholar 

  19. Chen, I-W. P. et al. Tactile-feedback stabilized molecular junctions for the measurement of molecular conductance. Angew. Chem. Int. Ed. 52, 2449–2453 (2013).

    Article  CAS  Google Scholar 

  20. Ahn, S. et al. Electronic transport and mechanical stability of carboxyl linked single-molecule junctions. Phys. Chem. Chem. Phys. 14, 13841–13845 (2012).

    Article  CAS  Google Scholar 

  21. Haiss, W. et al. Precision control of single-molecule electrical junctions. Nat. Mater. 5, 995–1002 (2006).

    Article  CAS  Google Scholar 

  22. Li, C. et al. Charge transport in single Au|alkanedithiol|Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130, 318–326 (2008).

    Article  CAS  Google Scholar 

  23. Xu, B., Xiao, X. & Tao, N. J. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003).

    Article  CAS  Google Scholar 

  24. Ko, C.-H., Huang, M.-J., Fu, M.-D. & Chen, C.-h. Superior contact for single-molecule conductance: electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au. J. Am. Chem. Soc. 132, 756–764 (2010).

    Article  CAS  Google Scholar 

  25. Guo, S., Hihath, J., Díez-Pérez, I. & Tao, N. Measurement and statistical analysis of single-molecule current–voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 133, 19189–19197 (2011).

    Article  CAS  Google Scholar 

  26. Lin, S.-Y. et al. Structures of self-assembled monolayers of n-alkanoic acids on gold surfaces modified by underpotential deposition of silver and copper: odd−even effect. Langmuir 18, 5473–5478 (2002).

    Article  CAS  Google Scholar 

  27. Xie, Z., Bâldea, I. & Frisbie, C. D. Energy level alignment in molecular tunnel junctions by transport and spectroscopy: self-consistency for the case of alkyl thiols and dithiols on Ag, Au, and Pt electrodes. J. Am. Chem. Soc. 141, 18182–18192 (2019).

    Article  CAS  Google Scholar 

  28. Xie, Z., Bâldea, I. & Frisbie, C. D. Determination of energy-level alignment in molecular tunnel junctions by transport and spectroscopy: self-consistency for the case of oligophenylene thiols and dithiols on Ag, Au, and Pt electrodes. J. Am. Chem. Soc. 141, 3670–3681 (2019).

    Article  CAS  Google Scholar 

  29. Xie, Z., Bâldea, I., Smith, C. E., Wu, Y. & Frisbie, C. D. Experimental and theoretical analysis of nanotransport in oligophenylene dithiol junctions as a function of molecular length and contact work function. ACS Nano 9, 8022–8036 (2015).

    Article  CAS  Google Scholar 

  30. Bâldea, I. Ambipolar transition voltage spectroscopy: analytical results and experimental agreement. Phys. Rev. B 85, 035442 (2012).

    Article  Google Scholar 

  31. Xiang, A. et al. The origin of the transition voltage of gold–alkanedithiol–gold molecular junctions. Chem. Phys. 465−466, 40–45 (2016).

    Article  Google Scholar 

  32. Nose, D. et al. Effects of interface electronic structures on transition voltage spectroscopy of alkanethiol molecular junctions. J. Phys. Chem. C 119, 12765–12771 (2015).

    Article  CAS  Google Scholar 

  33. Ricœur, G., Lenfant, S., Guérin, D. & Vuillaume, D. Molecule/electrode interface energetics in molecular junction: a ‘transition voltage spectroscopy’ study. J. Phys. Chem. C 116, 20722–20730 (2012).

    Article  Google Scholar 

  34. Huisman, E. H., Guédon, C. M., van Wees, B. J. & van der Molen, S. J. Interpretation of transition voltage spectroscopy. Nano Lett. 9, 3909–3913 (2009).

    Article  CAS  Google Scholar 

  35. Baldea, I. Important issues facing model-based approaches to tunneling transport in molecular junctions. Phys. Chem. Chem. Phys. 17, 20217–20230 (2015).

    Article  CAS  Google Scholar 

  36. Martín, S. et al. Adverse effects of asymmetric contacts on single molecule conductances of HS(CH2)nCOOH in nanoelectrical junctions. Nanotechnology 20, 125203 (2009).

    Article  Google Scholar 

  37. Al-Owaedi, O. A. et al. Insulated molecular wires: inhibiting orthogonal contacts in metal complex based molecular junctions. Nanoscale 9, 9902–9912 (2017).

    Article  CAS  Google Scholar 

  38. Jones, B. A., Facchetti, A., Wasielewski, M. R. & Marks, T. J. Tuning orbital energetics in arylene diimide semiconductors. Materials design for ambient stability of n-type charge transport. J. Am. Chem. Soc. 129, 15259–15278 (2007).

    Article  CAS  Google Scholar 

  39. Cercellier, H. et al. Interplay between structural, chemical, and spectroscopic properties of Ag/Au(111) epitaxial ultrathin films: a way to tune the Rashba coupling. Phys. Rev. B 73, 195413 (2006).

    Article  Google Scholar 

  40. CRC Handbook of Chemistry and Physics 100th edn (CRC, 2020).

  41. Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment 2nd edn (World Scientific, 2017).

  42. Datta, S. Quantum Transport: Atom to Transistor (Cambridge Univ. Press, 2005).

  43. Helander, M. G., Greiner, M. T., Wang, Z. B. & Lu, Z. H. Angle-dependent ultraviolet photoelectron spectroscopy of sputter cleaned polycrystalline noble metals. Appl. Surf. Sci. 255, 9553–9556 (2009).

    Article  CAS  Google Scholar 

  44. Shapiro, A. P., Hsieh, T. C., Wachs, A. L., Miller, T. & Chiang, T.-C. Band dispersions of Ag(111) monolayers on various substrates. Phys. Rev. B 38, 7394–7407 (1988).

    Article  CAS  Google Scholar 

  45. Peng, Z.-L. et al. Single molecule conductance of carboxylic acids contacting Ag and Cu electrodes. J. Phys. Chem. C 116, 21699–21705 (2012).

    Article  CAS  Google Scholar 

  46. Wang, Y.-H. et al. Tunneling decay constant of alkanedicarboxylic acids: different dependence on the metal electrodes between air and electrochemistry. J. Phys. Chem. C 118, 18756–18761 (2014).

    Article  CAS  Google Scholar 

  47. Frei, M., Aradhya, S. V., Hybertsen, M. S. & Venkataraman, L. Linker dependent bond rupture force measurements in single-molecule junctions. J. Am. Chem. Soc. 134, 4003–4006 (2012).

    Article  CAS  Google Scholar 

  48. Park, Y. S. et al. Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–15769 (2007).

    Article  CAS  Google Scholar 

  49. Frei, M., Aradhya, S. V., Koentopp, M., Hybertsen, M. S. & Venkataraman, L. Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett. 11, 1518–1523 (2011).

    Article  CAS  Google Scholar 

  50. Zhou, X.-S. et al. Extending the capability of STM break junction for conductance measurement of atomic-size nanowires: an electrochemical strategy. J. Am. Chem. Soc. 130, 13228–13230 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to C.-H. Lin (NTU) and L.-Y. Hsu (IAMS, Academia Sinica) for fruitful discussions and to F.-M. Chen for the graphic drawing. Thanks to S.-J. Ji of the Ministry of Science and Technology (MOST) for the characterization of UPD-modified AFM tips by SEM. This research is supported by MOST (109-2628-M-143-001-MY3, 108-2113-M-002-007-MY3 and 106-2113-M-032-005) and by NTU (108L880115). H.H.P. thanks NTU for a University Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.-h.C. conceived the idea. M.-W.G. developed the theoretical model. M.-W.G. and H.H.P. performed the experiments and the data were analysed by M.-W.G., H.H.P. and I-W.P.C. I-W.P.C. and C.-h.C. supervised the research. The manuscript was written through contributions from all authors.

Corresponding authors

Correspondence to I-Wen Peter Chen or Chun-hsien Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Thomas Frederiksen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–10, Tables 1–5, glossary and refs. 1–75.

Source data

Source Data Fig. 2

Numerical data used to generate the graphs displayed in panels a–c.

Source Data Fig. 3

Numerical data used to generate the graphs displayed in panels a and b.

Source Data Fig. 4

Numerical data used to generate the graphs displayed in panels c–e and h–j.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, MW., Peng, H.H., Chen, IW.P. et al. Tuning surface d bands with bimetallic electrodes to facilitate electron transport across molecular junctions. Nat. Mater. 20, 658–664 (2021). https://doi.org/10.1038/s41563-020-00876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00876-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing