Dynamic multimodal holograms of conjugated organogels via dithering mask lithography

Abstract

Polymeric materials have been used to realize optical systems that, through periodic variations of their structural or optical properties, interact with light-generating holographic signals. Complex holographic systems can also be dynamically controlled through exposure to external stimuli, yet they usually contain only a single type of holographic mode. Here, we report a conjugated organogel that reversibly displays three modes of holograms in a single architecture. Using dithering mask lithography, we realized two-dimensional patterns with varying cross-linking densities on a conjugated polydiacetylene. In protic solvents, the organogel contracts anisotropically to develop optical and structural heterogeneities along the third dimension, displaying holograms in the form of three-dimensional full parallax signals, both in fluorescence and bright-field microscopy imaging. In aprotic solvents, these heterogeneities diminish as organogels expand, recovering the two-dimensional periodicity to display a third hologram mode based on iridescent structural colours. Our study presents a next-generation hologram manufacturing method for multilevel encryption technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Architecture and multimodal hologram of responsive conjugated PDA organogels formed via dithering mask lithography.
Fig. 2: Solvent effects on the chain conformation and electronic properties of PDA structures.
Fig. 3: Holographic signals displayed by PDA organogels and estimated from a series of numerical studies.
Fig. 4: Cryptographic systems and flexible applications using PDA organogel microstructures.
Fig. 5: Encryption of PDA organogel matrix with multiple structural colours.

Data availability

All data supporting this study are available within the paper and/or are available from the authors upon reasonable request.

References

  1. 1.

    Kang, Y., Walish, J. J., Gorishnyy, T. & Thomas, E. L. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater. 6, 957–960 (2007).

    CAS  Google Scholar 

  2. 2.

    Matsubara, K., Watanabe, M. & Takeoka, Y. A thermally adjustable multicolor photochromic hydrogel. Angew. Chem. Int. Ed. 46, 1688–1692 (2007).

    CAS  Google Scholar 

  3. 3.

    Kim, H. et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photonics 3, 534–540 (2009).

    CAS  Google Scholar 

  4. 4.

    Honda, M., Seki, T. & Takeoka, Y. Dual tuning of the photonic band-gap structure in soft photonic crystals. Adv. Mater. 21, 1801–1804 (2009).

    CAS  Google Scholar 

  5. 5.

    Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).

    CAS  Google Scholar 

  6. 6.

    Sagara, Y. & Kato, T. Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 1, 605–610 (2009).

    CAS  Google Scholar 

  7. 7.

    Chiappelli, M. C. & Hayward, R. C. Photonic multilayer sensors from photo-crosslinkable polymer films. Adv. Mater. 24, 6100–6104 (2012).

    CAS  Google Scholar 

  8. 8.

    Wang, Q. M., Gossweiler, G. R., Craig, S. L. & Zhao, X. H. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning. Nat. Commun. 5, 4899 (2014).

    Google Scholar 

  9. 9.

    Luo, W. et al. Steric-repulsion-based magnetically responsive photonic crystals. Adv. Mater. 26, 1058–1064 (2014).

    CAS  Google Scholar 

  10. 10.

    Xiao, F. B. et al. Smart photonic crystal hydrogel material for uranyl ion monitoring and removal in water. Adv. Funct. Mater. 27, 1702147 (2017).

    Google Scholar 

  11. 11.

    Couturier, J. P., Sutterlin, M., Laschewsky, A., Hettrich, C. & Wischerhoff, E. Responsive inverse opal hydrogels for the sensing of macromolecules. Angew. Chem. Int. Ed. 54, 6641–6644 (2015).

    CAS  Google Scholar 

  12. 12.

    Asher, S. A., Holtz, J., Liu, L. & Wu, Z. J. Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J. Am. Chem. Soc. 116, 4997–4998 (1994).

    CAS  Google Scholar 

  13. 13.

    Weissman, J. M., Sunkara, H. B., Tse, A. S. & Asher, S. A. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274, 959–960 (1996).

    CAS  Google Scholar 

  14. 14.

    Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G. & Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    CAS  Google Scholar 

  15. 15.

    Tondiglia, V. P., Natarajan, L. V., Sutherland, R. L., Tomlin, D. & Bunning, T. J. Holographic formation of electro-optical polymer-liquid crystal photonic crystals. Adv. Mater. 14, 187–191 (2002).

    CAS  Google Scholar 

  16. 16.

    Orosco, M. M., Pacholski, C., Miskelly, G. M. & Sailor, M. J. Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity. Adv. Mater. 18, 1393–1396 (2006).

    CAS  Google Scholar 

  17. 17.

    Yoon, J., Lee, W. & Thomas, E. L. Thermochromic block copolymer photonic gel. Macromolecules 41, 4582–4584 (2008).

    CAS  Google Scholar 

  18. 18.

    Tay, S. et al. An updatable holographic three-dimensional display. Nature 451, 694–698 (2008).

    CAS  Google Scholar 

  19. 19.

    Zhou, Y., Hauser, A. W., Bende, N. P., Kuzyk, M. G. & Hayward, R. C. Waveguiding microactuators based on a photothermally responsive nanocomposite hydrogel. Adv. Funct. Mater. 26, 5447–5452 (2016).

    CAS  Google Scholar 

  20. 20.

    Lim, H. S., Lee, J. H., Walish, J. J. & Thomas, E. L. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano 6, 8933–8939 (2012).

    CAS  Google Scholar 

  21. 21.

    Kim, S. et al. Silk inverse opals. Nat. Photonics 6, 817–822 (2012).

    Google Scholar 

  22. 22.

    Burgess, I. B., Lončar, M. & Aizenberg, J. Structural colour in colourimetric sensors and indicators. J. Mater. Chem. C 1, 6075–6086 (2013).

    CAS  Google Scholar 

  23. 23.

    Lee, G. H. et al. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 11, 11350–11357 (2017).

    CAS  Google Scholar 

  24. 24.

    Jiang, N. et al. Laser interference lithography for the nanofabrication of stimuli-responsive Bragg stacks. Adv. Funct. Mater. 28, 1702715 (2018).

    Google Scholar 

  25. 25.

    Zhao, Q. L., Wang, Y. L., Cui, H. Q. & Du, X. M. Bio-inspired sensing and actuating materials. J. Mater. Chem. C 7, 6493–6511 (2019).

    CAS  Google Scholar 

  26. 26.

    Liao, J. L. et al. Multiresponsive elastic colloidal crystals for reversible structural color patterns. Adv. Funct. Mater. 29, 1902954 (2019).

    Google Scholar 

  27. 27.

    Watanabe, T. et al. Photoresponsive hydrogel microstructure fabricated by two-photon initiated polymerization. Adv. Funct. Mater. 12, 611–614 (2002).

    CAS  Google Scholar 

  28. 28.

    Li, J., Liang, G. Q., Zhu, X. L. & Yang, S. Exploiting nanoroughness on holographically patterned three-dimensional photonic crystals. Adv. Funct. Mater. 22, 2980–2986 (2012).

    CAS  Google Scholar 

  29. 29.

    Beristain, M. F., Estrada, M. R., Ortega, A., Claverie, A. L. & Ogawa, T. Radical stabilization of aromatic diacetylenes (dinaphthylbutadiynes) in the free radical polymerization of methyl methacrylate. Polym. J. 48, 963–967 (2016).

    CAS  Google Scholar 

  30. 30.

    Beristain, M. F., Munoz, E. & Ogawa, T. Polymerization of diphenylbutadiyne derivatives in solution by free radical initiator. J. Macromol. Sci. A 44, 605–611 (2007).

    CAS  Google Scholar 

  31. 31.

    Beristain, M. F., Bucio, E., Burillo, G., Munoz, E. & Ogawa, T. Study on the interaction of diarylbutadiynes with free radicals: Interaction with propagating radicals of some vinyl monomers. Polym. Bull. 43, 357–364 (1999).

    CAS  Google Scholar 

  32. 32.

    Kim, J. M. et al. A polydiacetylene-based fluorescent sensor chip. J. Am. Chem. Soc. 127, 17580–17581 (2005).

    CAS  Google Scholar 

  33. 33.

    Lee, J., Kim, H. J. & Kim, J. Polydiacetylene liposome arrays for selective potassium detection. J. Am. Chem. Soc. 130, 5010–5011 (2008).

    CAS  Google Scholar 

  34. 34.

    Lee, J., Jun, H. & Kim, J. Polydiacetylene-liposome microarrays for selective and sensitive mercury(II) detection. Adv. Mater. 21, 3674–3677 (2009).

    CAS  Google Scholar 

  35. 35.

    Lauher, J. W., Fowler, F. W. & Goroff, N. S. Single-crystal-to-single-crystal topochemical polymerizations by design. Acc. Chem. Res. 41, 1215–1229 (2008).

    CAS  Google Scholar 

  36. 36.

    Day, D. & Lando, J. B. Structure determination of a poly(diacetylene) monolayer. Macromolecules 13, 1483–1487 (1980).

    CAS  Google Scholar 

  37. 37.

    Menzel, H., Mowery, M. D., Cai, M. & Evans, C. E. Vertical positioning of internal molecular scaffolding within a single molecular layer. J. Phys. Chem. B 102, 9550–9556 (1998).

    CAS  Google Scholar 

  38. 38.

    Batchelder, D. N. et al. Self-assembled monolayers containing polydiacetylenes. J. Am. Chem. Soc. 116, 1050–1053 (1994).

    CAS  Google Scholar 

  39. 39.

    Carpick, R. W., Sasaki, D. Y., Marcus, M. S., Eriksson, M. A. & Burns, A. R. Polydiacetylene films: a review of recent investigations into chromogenic transitions and nanomechanical properties. J. Phys. Condens. Matter 16, R679–R697 (2004).

    CAS  Google Scholar 

  40. 40.

    Filhol, J. S. et al. Polymorphs and colors of polydiacetylenes: a first principles study. J. Am. Chem. Soc. 131, 6976–6988 (2009).

    CAS  Google Scholar 

  41. 41.

    Goodman, J. W. Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

  42. 42.

    Vyas, U. & Christensen, D. Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1093–1100 (2012).

    Google Scholar 

  43. 43.

    Yang, J. M., Li, J. W., He, S. L. & Wang, L. H. V. Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation. Optica 6, 250–256 (2019).

    CAS  Google Scholar 

  44. 44.

    Duan, X. Y., Kamin, S. & Liu, N. Dynamic plasmonic colour display. Nat. Commun. 8, 14606 (2017).

    CAS  Google Scholar 

  45. 45.

    Wen, D. D., Cadusch, J. J., Meng, J. & Crozier, K. B. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images. Adv. Funct. Mater. 30, 1906415 (2020).

    CAS  Google Scholar 

  46. 46.

    Lee, J. et al. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 13, 524–529 (2014).

    CAS  Google Scholar 

  47. 47.

    Liu, Y. et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat. Commun. 10, 2409 (2019).

    Google Scholar 

  48. 48.

    Kamat, N. P. et al. Sensing membrane stress with near IR-emissive porphyrins. Proc. Natl Acad. Sci. USA 108, 13984–13989 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017M3D9A1073922, NRF-2014R1A5A1009799), the Civil Military Technology Development Project of the Institute of Civil Military Technology Cooperation Center (ICMTC) funded by the Ministry of Trade, Industry and Energy, the Defense Acquisition Program Administration of Korea (18-CM-SS-13) and the Korea Environment Industry & Technology Institute (KEITI) through its Ecological Imitation-based Environmental Pollution Management Technology Development Project and funded by the Korea Ministry of Environment (MOE) (2019002790007).

Author information

Affiliations

Authors

Contributions

J.O., D.B. and H.H. conducted the majority of the experiments, interpreted data and wrote the manuscript. T.K.L. and D.K. conducted the majority of the theoretical calculations and wrote the manuscript. I.J. participated in the imaging experiments. Y.Y., C.S. and D.K. conducted the photopolymerization analysis. E.M.G. and M.W. conducted theoretical calculations. K.N. measured the structural colour efficiency. M.J. conducted elemental analysis of the investigated chemicals. J.-H.P., S.K.K., J.K. and J.L. interpreted the theoretical data and wrote the manuscript. J.L. conceived the project, interpreted the results and supervised the study. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Sang Kyu Kwak or Jungwook Kim or Jiseok Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Chenfeng Ke, Yukikazu Takeoka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–11, Figs. 1–62, Tables 1 and 2 and captions for Supplementary Videos 1–13.

Supplementary Video 1

Reversible volume change of conjugated PDA organogel microstructures upon exposure to ACN and methanol (bright-field).

Supplementary Video 2

Reversible volume change of conjugated PDA organogel microstructures upon exposure to ACN and methanol (fluorescence).

Supplementary Video 3

A shift of 3D-focused light of the organogel patterned with a square dithering mask as the direction of incident light changes slightly. When the direction of incident light changed slightly, the 3D-focused light shifted accordingly with the physical structure remaining stationary.

Supplementary Video 4

Temporal evolution of 3D parallax signal above the physical structure of the organogel patterned with a hexagon dithering mask during the solvent exchange to water.

Supplementary Video 5

Reversible 3D full parallax signals generation of the conjugated PDA organogel microstructures patterned by various dithering masks upon exposure to ACN and methanol (bright-field).

Supplementary Video 6

Reversible 3D full parallax signals generation of the conjugated PDA organogel microstructures patterned by various dithering masks upon exposure to ACN and methanol (fluorescence).

Supplementary Video 7

Reversible cryptographic patterns of dithering mask-patterned conjugated PDA organogel microstructures (bright-field).

Supplementary Video 8

Reversible cryptographic patterns of dithering mask-patterned conjugated PDA organogel microstructures (fluorescence).

Supplementary Video 9

The structural colour change of dithering mask (horizontal and vertical) patterned PDA microstructures array according to the incident light angle.

Supplementary Video 10

Dithering mask-patterned PDA organogel microstructure array exhibiting ‘T’ and ‘S’ upon rotation of incident light angle by 90°.

Supplementary Video 11

Hidden code decryption of the 4 × 4 and 5 × 5 encoded PDA organogels by rotating the samples by 90°.

Supplementary Video 12

Multicolour masterpiece holograms of PDA organogels by changing the focal plane.

Supplementary Video 13

Selective structural colour change of PDA organogels patterned with horizontal and vertical line masks by rotating the portable imaging device.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, J., Baek, D., Lee, T.K. et al. Dynamic multimodal holograms of conjugated organogels via dithering mask lithography. Nat. Mater. 20, 385–394 (2021). https://doi.org/10.1038/s41563-020-00866-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing