Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metal–ferroelectric supercrystals with periodically curved metallic layers

Abstract

Simultaneous manipulation of multiple boundary conditions in nanoscale heterostructures offers a versatile route to stabilizing unusual structures and emergent phases. Here, we show that a stable supercrystal phase comprising a three-dimensional ordering of nanoscale domains with tailored periodicities can be engineered in PbTiO3–SrRuO3 ferroelectric–metal superlattices. A combination of laboratory and synchrotron X-ray diffraction, piezoresponse force microscopy, scanning transmission electron microscopy and phase-field simulations reveals a complex hierarchical domain structure that forms to minimize the elastic and electrostatic energy. Large local deformations of the ferroelectric lattice are accommodated by periodic lattice modulations of the metallic SrRuO3 layers with curvatures up to 107 m−1. Our results show that multidomain ferroelectric systems can be exploited as versatile templates to induce large curvatures in correlated materials, and present a route for engineering correlated materials with modulated structural and electronic properties that can be controlled using electric fields.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Reciprocal space view of the 3D domain structure.
Fig. 2: PFM characterization of flux-closure domains.
Fig. 3: Electron microscopy characterization of the supercrystal phase.
Fig. 4: Supercrystal structure in PbTiO3–SrTiO3 hierarchical superlattices.
Fig. 5: Phase-field simulations.
Fig. 6: Mapping the curvature of periodically modulated SrRuO3 layers.

Data availability

The STEM dataset and analysis used for calculating the curvature of the SrRuO3 layers can be found at temul-toolkit.readthedocs.io/en/latest/PTO_supercrystal_hadjimichael.html. Other datasets supporting the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    CAS  Article  Google Scholar 

  2. Roytburd, A. L., Ouyang, J. & Artemev, A. Polydomain structures in ferroelectric and ferroelastic epitaxial films. J. Phys. Condens. Matter 29, 163001 (2017).

    Article  Google Scholar 

  3. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    CAS  Article  Google Scholar 

  4. Tang, Y. L. et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547–551 (2015).

    CAS  Article  Google Scholar 

  5. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    CAS  Article  Google Scholar 

  6. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    CAS  Article  Google Scholar 

  7. Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    CAS  Article  Google Scholar 

  8. Stoica, V. A. et al. Optical creation of a supercrystal with three-dimensional nanoscale periodicity. Nat. Mater. 18, 377–383 (2019).

    CAS  Article  Google Scholar 

  9. Damodaran, A. R. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).

    CAS  Article  Google Scholar 

  10. Pierangeli, D. et al. Super-crystals in composite ferroelectrics. Nat. Commun. 7, 10674 (2016).

    CAS  Article  Google Scholar 

  11. Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963–967 (2011).

    CAS  Article  Google Scholar 

  12. Kittel, C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946).

    CAS  Article  Google Scholar 

  13. Schilling, A. et al. Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B 74, 024115 (2006).

    Article  Google Scholar 

  14. Nesterov, O. et al. Thickness scaling of ferroelastic domains in PbTiO3 films on DyScO3. Appl. Phys. Lett. 103, 142901 (2013).

    Article  Google Scholar 

  15. Pertsev, N. A. & Zembilgotov, A. G. Energetics and geometry of 90-degrees domain-structures in epitaxial ferroelectric and ferroelastic films. J. Appl. Phys. 78, 6170–6180 (1995).

    CAS  Article  Google Scholar 

  16. Morioka, H. et al. Suppressed polar distortion with enhanced Curie temperature in in-plane 90 degrees-domain structure of a-axis oriented PbTiO3 Film. Appl. Phys. Lett. 106, 042905 (2015).

    Article  Google Scholar 

  17. May, S. J. et al. Magnetically asymmetric interfaces in a LaMnO3/SrMnO3 superlattice due to structural asymmetries. Phys. Rev. B 77, 174409 (2008).

    Article  Google Scholar 

  18. Koster, G. et al. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84, 253–298 (2012).

    CAS  Article  Google Scholar 

  19. Hadjimichael, M., Li, Y., Yedra, L., Dkhil, B. & Zubko, P. Domain structure and dielectric properties of metal-ferroelectric superlattices with asymmetric interfaces. Phys. Rev. Mater. 4, 094415 (2020).

    CAS  Article  Google Scholar 

  20. Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    CAS  Article  Google Scholar 

  21. Liu, Y. et al. Large scale two-dimensional flux-closure domain arrays in oxide multilayers and their controlled growth. Nano Lett. 17, 7258–7266 (2017).

    CAS  Article  Google Scholar 

  22. Li, S. et al. Periodic arrays of flux-closure domains in ferroelectric thin films with oxide electrodes. Appl. Phys. Lett. 111, 052901 (2017).

    Article  Google Scholar 

  23. Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl Acad. Sci. USA 115, 915–920 (2018).

    CAS  Article  Google Scholar 

  24. Zubko, P., Stucki, N., Lichtensteiger, C. & Triscone, J. M. X-ray diffraction studies of 180º ferroelectric domains in PbTiO3/SrTiO3 superlattices under an applied electric field. Phys. Rev. Lett. 104, 187601 (2010).

    CAS  Article  Google Scholar 

  25. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    CAS  Article  Google Scholar 

  26. Yudin, P. V. & Tagantsev, A. K. Fundamentals of flexoelectricity in solids. Nanotechnology 24, 432001 (2013).

    CAS  Article  Google Scholar 

  27. Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013).

    CAS  Article  Google Scholar 

  28. Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016).

    CAS  Article  Google Scholar 

  29. Ortix, C., Kiravittaya, S., Schmidt, O. G. & van den Brink, J. Curvature-induced geometric potential in strain-driven nanostructures. Phys. Rev. B. 84, 045438 (2011).

    Article  Google Scholar 

  30. Streubel, R. et al. Magnetism in curved geometries. J. Phys. D. Appl. Phys. 49, 363001 (2016).

    Article  Google Scholar 

  31. Leake, S. J. et al. The Nanodiffraction beamline ID01/ESRF: a microscope for imaging strain and structure. J. Synchrotron Radiat. 26, 571–584 (2019).

    CAS  Article  Google Scholar 

  32. Chahine, G. A. et al. Advanced non-destructive in situ characterization of metals with the French Collaborating Research Group D2AM/BM02 Beamline at the European Synchrotron Radiation Facility. Metals 9, 352 (2019).

    CAS  Article  Google Scholar 

  33. Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imag. 3, 9 (2017).

    Article  Google Scholar 

  34. Marton, P. & Hlinka, J. Simulation of domain patterns in BaTiO3. Phase Transit. 79, 467–483 (2006).

    CAS  Article  Google Scholar 

  35. Hlinka, J. & Marton, P. Phenomenological model of a 90° domain wall in BaTiO3-type ferroelectrics. Phys. Rev. B 74, 104104 (2006).

    Article  Google Scholar 

  36. Ondrejkovic, P., Marton, P., Stepkova, V. & Hlinka, J. in Domain Walls: From Fundamental Properties to Nanotechnology Concepts (eds Meier, D. et al.) (Oxford Univ. Press, 2020).

  37. Everhardt, A. S. et al. Temperature-independent giant dielectric response in transitional BaTiO3 thin films. Appl. Phys. Rev. 7, 011402 (2020).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank V. Tileli for preliminary TEM characterization and ESRF for provision of synchrotron radiation facilities. Parts of this work were supported by the EPSRC through grant nos. EP/M007073/1 (P.Z. and M.H.) and EP/S010769/1 (P.Z., Y.L. and E.Z.), the China Scholarship Council (Y.L.), UCL-ESRF Impact scholarship (E.Z.) and the A. G. Leventis Foundation (M.H.). J.H. and P.O. acknowledge support from the Czech Science Foundation (project 19-28594X). M.C., K.M., E.N.O’C. and U.B. acknowledge financial support from Science Foundation Ireland (SFI 16/US/3344). M.C. acknowledges funding from SFI Industry Fellowship (18/IF/6282).

Author information

Authors and Affiliations

Authors

Contributions

Sample growth and laboratory diffraction measurements were carried out by M.H. and Y.L. Synchrotron experiments were carried out by M.H., E.Z., G.A.C. and S.L. The results were analysed and interpreted by M.H. and P.Z. PFM measurements were carried out by Y.L. STEM sample preparation, measurements and analysis were performed by M.C., K.M., E.N.O’C. and U.B. Phase-field simulations were performed by P.O., P.M. and J.H. M.H. and P.Z. conceived the project and drafted the manuscript with input from all authors.

Corresponding authors

Correspondence to Marios Hadjimichael or Pavlo Zubko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Oleg Shpyrko and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Table 1 and refs. 1–4.

Supplementary Video 1

Synchrotron XRD 3D reciprocal space map.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hadjimichael, M., Li, Y., Zatterin, E. et al. Metal–ferroelectric supercrystals with periodically curved metallic layers. Nat. Mater. 20, 495–502 (2021). https://doi.org/10.1038/s41563-020-00864-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00864-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing