Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines

Abstract

Conductive and stretchable electrodes that can be printed directly on a stretchable substrate have drawn extensive attention for wearable electronics and electronic skins. Printable inks that contain liquid metal are strong candidates for these applications, but the insulating oxide skin that forms around the liquid metal particles limits their conductivity. This study reveals that hydrogen doping introduced by ultrasonication in the presence of aliphatic polymers makes the oxide skin highly conductive and deformable. X-ray photoelectron spectroscopy and atom probe tomography confirmed the hydrogen doping, and first-principles calculations were used to rationalize the obtained conductivity. The printed circuit lines show a metallic conductivity (25,000 S cm–1), excellent electromechanical decoupling at a 500% uniaxial stretching, mechanical resistance to scratches and long-term stability in wide ranges of temperature and humidity. The self-passivation of the printed lines allows the direct printing of three-dimensional circuit lines and double-layer planar coils that are used as stretchable inductive strain sensors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Characterization of the H-doped LM MPs.
Fig. 2: Computational modelling of the LM oxide.
Fig. 3: Viscoplastic deformability of the H-doped oxide skin.
Fig. 4: Electrical and mechanical stability of the printed LM MP circuit line.
Fig. 5: Printed 3D circuit line with autonomous self-passivation.

Data availability

All the data that support this study are included in this article and its supplementary information files. Source data are provided with this paper.

References

  1. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    CAS  Google Scholar 

  2. You, I. et al. Stretchable E-skin apexcardiogram sensor. Adv. Mater. 28, 6359–6364 (2016).

    CAS  Google Scholar 

  3. Xu, S., Jayaraman, A. & Rogers, J. A. Skin sensors are the future of health care. Nature 571, 319–321 (2019).

    CAS  Google Scholar 

  4. Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).

    CAS  Google Scholar 

  5. Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    CAS  Google Scholar 

  6. Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    CAS  Google Scholar 

  7. Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).

    Google Scholar 

  8. Chu, K. et al. Smart passivation materials with a liquid metal microcapsule as self-healing conductors for sustainable and flexible perovskite solar cells. Adv. Funct. Mater. 28, 1800110 (2018).

    Google Scholar 

  9. Roh, H. et al. Liquid metal covered with thermoplastic conductive composites for high electrical stability and negligible electromechanical coupling at large strains. ACS Appl. Mater. Interfaces 11, 26204–26212 (2019).

    CAS  Google Scholar 

  10. Kim, H. W. et al. Hygroscopic auxetic on-skin sensors for easy-to-handle repeated daily use. ACS Appl. Mater. Interfaces 10, 40141–40148 (2018).

    CAS  Google Scholar 

  11. Song, J. H. et al. Surface-embedded stretchable electrodes by direct printing and their uses to fabricate ultrathin vibration sensors and circuits for 3D structures. Adv. Mater. 29, 1702625 (2017).

    Google Scholar 

  12. Choi, S., Han, S. I., Kim, D., Hyeon, T. & Kim, D. H. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48, 1566–1595 (2019).

    CAS  Google Scholar 

  13. Hirsch, A., Dejace, L., Michaud, H. O. & Lacour, S. P. Harnessing the rheological properties of liquid metals to shape soft electronic conductors for wearable applications. Acc. Chem. Res. 52, 534–544 (2019).

    CAS  Google Scholar 

  14. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    CAS  Google Scholar 

  15. Boley, J. W., White, E. L. & Kramer, R. K. Mechanically sintered gallium–indium nanoparticles. Adv. Mater. 27, 2355–2360 (2015).

    CAS  Google Scholar 

  16. Wang, J. X. et al. Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid–metal particles. Adv. Mater. 30, 1706157 (2018).

    Google Scholar 

  17. Xin, Y. M., Peng, H., Xu, J. & Zhang, J. Y. Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials. Adv. Funct. Mater. 29, 1808989 (2019).

    Google Scholar 

  18. Markvicka, E. J., Bartlett, M. D., Huang, X. N. & Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

    CAS  Google Scholar 

  19. Zhu, S. et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 23, 2308–2314 (2013).

    CAS  Google Scholar 

  20. Guo, R., Sun, X. Y., Yuan, B., Wang, H. Z. & Liu, J. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv. Sci. 6, 1901478 (2019).

    CAS  Google Scholar 

  21. Wang, X. L. et al. Soft and moldable Mg-doped liquid metal for conformable skin tumor photothermal therapy. Adv. Healthc. Mater. 7, 1800318 (2018).

    Google Scholar 

  22. Tang, J. B. et al. Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl. Mater. Interfaces 9, 35977–35987 (2017).

    CAS  Google Scholar 

  23. Zheng, R. M. et al. A novel conductive core–shell particle based on liquid metal for fabricating real-time self-repairing flexible circuits. Adv. Funct. Mater. 30, 1910524 (2020).

    CAS  Google Scholar 

  24. Çınar, S., Tevis, I. D., Chen, J. & Thuo, M. Mechanical fracturing of core–shell undercooled metal particles for heat-free soldering. Sci. Rep. 6, 21864 (2016).

    Google Scholar 

  25. Desai, V., Shenoy, M. A. & Gogate, P. R. Ultrasonic degradation of low-density polyethylene. Chem. Eng. Process. 47, 1451–1455 (2008).

    CAS  Google Scholar 

  26. Liu, S. Q., Gong, W. G. & Zheng, B. C. The effect of peroxide cross-linking on the properties of low-density polyethylene. J. Macromol. Sci. B 53, 67–77 (2014).

    Google Scholar 

  27. Suslick, K. S., Gawienowski, J. J., Schubert, P. F. & Wang, H. H. Alkane sonochemistry. J. Phys. Chem. 87, 2299–2301 (1983).

    CAS  Google Scholar 

  28. Kim, M. H. et al. Photochemical hydrogen doping induced embedded two-dimensional metallic channel formation in InGaZnO at room temperature. Acs Nano 9, 9964–9973 (2015).

    CAS  Google Scholar 

  29. Cademartiri, L. et al. Electrical resistance of AgTS–S(CH2)n−1CH3//Ga2O3/EGaIn tunneling junctions. J. Phys. Chem. C 116, 10848–10860 (2012).

    CAS  Google Scholar 

  30. Zhang, C. et al. Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells. J. Mater. Chem. C 2, 8715–8722 (2014).

    CAS  Google Scholar 

  31. Huang, C. J. et al. Effect of OH on chemical mechanical polishing of β-Ga2O3(100) substrate using an alkaline slurry. RSC Adv. 8, 6544–6550 (2018).

    CAS  Google Scholar 

  32. Surdu-Bob, C. C., Saied, S. O. & Sullivan, J. L. An X-ray photoelectron spectroscopy study of the oxides of GaAs. Appl. Surf. Sci. 183, 126–136 (2001).

    CAS  Google Scholar 

  33. Donley, C. et al. Characterization of indium–tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions. Langmuir 18, 450–457 (2002).

    CAS  Google Scholar 

  34. Yong, Y. Q. et al. Use of decomposable polymer-coated submicron Cu particles with effective additive for production of highly conductive Cu films at low sintering temperature. J. Mater. Chem. C 5, 1033–1041 (2017).

    CAS  Google Scholar 

  35. Wei, Y. D. et al. Interaction between hydrogen and gallium vacancies in β-Ga2O3. Sci. Rep. 8, 10142 (2018).

    Google Scholar 

  36. Wu, Y. Z. et al. Atomic layer deposition of In2O3:H from InCp and H2O/O2: microstructure and isotope labeling studies. ACS Appl. Mater. Interfaces 9, 592–601 (2017).

    CAS  Google Scholar 

  37. Sheng, J., Park, E. J., Shong, B. & Park, J. S. Atomic layer deposition of an indium gallium oxide thin film for thin-film transistor applications. ACS Appl. Mater. Interfaces 9, 23934–23940 (2017).

    CAS  Google Scholar 

  38. Madsen, G. K. H. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006).

    CAS  Google Scholar 

  39. Jang, W., Lee, J., In, C., Choi, H. & Soon, A. Designing two-dimensional Dirac heterointerfaces of few-layer graphene and tetradymite-type Sb2Te3 for thermoelectric applications. ACS Appl. Mater. Interfaces 9, 42050–42057 (2017).

    CAS  Google Scholar 

  40. Frankberg, E. J. et al. Highly ductile amorphous oxide at room temperature and high strain rate. Science 366, 864–869 (2019).

    CAS  Google Scholar 

  41. Jacob, A. R., Parekh, D. P., Dickey, M. D. & Hsiao, L. C. Interfacial rheology of gallium-based liquid metals. Langmuir 35, 11774–11783 (2019).

    CAS  Google Scholar 

  42. Fehlner, F. P. & Mott, N. F. Low-temperature oxidation. Oxid. Met. 2, 59–99 (1970).

    CAS  Google Scholar 

  43. Oh, J. Y., Kim, S., Baik, H. K. & Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 28, 4455–4461 (2016).

    CAS  Google Scholar 

  44. Tang, L. et al. Printable metal–polymer conductors for highly stretchable bio-devices. iScience 4, 302–311 (2018).

    CAS  Google Scholar 

  45. Lazarus, N., Meyer, C. D. & Bedair, S. S. Stretchable inductor design. IEEE Trans. Electron Dev. 62, 2270–2277 (2015).

    Google Scholar 

  46. Fassler, A. & Majidi, C. Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics. Smart Mater. Struct. 22, 055023 (2013).

    CAS  Google Scholar 

  47. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  48. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

Download references

Acknowledgements

S.V. and U.J. acknowledge the support of a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. NRF-2020R1A2C3012738), the Center for Advanced Soft-Electronics funded by the Ministry of Science, ICT and Future Planning as Global Frontier Project (CASE-2015M3A6A5072945) and the Korea Research Institute of Chemical Technology (KRICT). W.J., E.K. and A.S. gratefully acknowledge support from the Ministry of Science and ICT under the Creative Materials Discovery Program (2018M3D1A1058536) and computational resources from KISTI (KSC-2019-CRE-0024). H.W. and L.B. are thankful for the financial support of a Marie Sklodowska-Curie Individual Fellowship (‘3D-SITS’) from the European Union’s Horizon 2020 research and innovation programme (no. 799733). J.B.S. appreciates financial support from the Ministry of Science and ICT (MSIT) of the Korean government (no. 2018R1C1B6008585). The authors thank S. J. Park and J. M. Park (POSTECH) for supporting the rheology measurements.

Author information

Authors and Affiliations

Authors

Contributions

S.V., H.W., L.B. and U.J. designed the experiment. S.V. carried out the fabrication and characterization of the LM MP circuit lines, analysed the data and wrote the manuscript along with U.J. A.S., W.J. and M.E.K. designed the theoretical part and wrote the corresponding part of the manuscript. J.B.S. performed the APT analysis. K.T., G.P. and I.Y. performed the electrical characterization of the conductive LM MPs and assisted the characterization of the die-hard properties of the circuit line. M.K., J.K., G.L., W.S. and A.G. assisted the characterization of the LM MP circuits.

Corresponding authors

Correspondence to Aloysius Soon or Unyong Jeong.

Ethics declarations

Competing interests

Patent applications (Korean Patent application numbers 10-2020-0038722 and 10-2020-0033237) have been filed based on the results of this study.

Additional information

Peer review information Nature Materials thanks Michael Dickey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Discussion and Tables 1–3.

Supplementary Video 1

Die-hard interconnection with LED.

Supplementary Video 2

Hard to kill the electrical connection under strain and mechanical damage.

Supplementary Video 3

3D complex printed line.

Source data

Source Data Fig. 1

Source Data.

Source Data Fig. 4

Source Data.

Source Data Fig. 5

Source Data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veerapandian, S., Jang, W., Seol, J.B. et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nat. Mater. 20, 533–540 (2021). https://doi.org/10.1038/s41563-020-00863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00863-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing