Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures

Abstract

Strong interactions of electromagnetic fields with plasmonic nanomaterials have been exploited in various applications. These applications have centred on plasmon-enhanced scattering rates in nearby molecules or plasmon-induced heating. A question that has emerged recently is whether it is possible to use plasmonic nanostructures in a range of hot electron (hole) applications, including photocatalysis, photovoltaics and photodetection. These applications require coupling of a plasmonic component, which amplifies the interaction of light with the material, to an attached non-plasmonic component that extracts this energy in the form of electronic excitations to perform a function. In this Perspective, we discuss recent work in the emerging field of hybrid plasmonics. We focus on fundamental questions related to the nanoscopic flow of energy and excited charge carriers in these multicomponent materials. We also address critical misconceptions, challenges and opportunities that require more attention.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characteristics of plasmon excitation and decay.
Fig. 2: Plasmon decay in hybrid plasmonic nanostructures.
Fig. 3: Demonstrations of energy and charge transfer in hybrid plasmonic systems.
Fig. 4: Engineering energy flow in hybrid plasmonic systems.
Fig. 5: Applications of hybrid plasmonic materials.

References

  1. 1.

    Giannini, V., Fernández-Domínguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011).

    CAS  Google Scholar 

  2. 2.

    Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    CAS  Google Scholar 

  3. 3.

    Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    CAS  Google Scholar 

  4. 4.

    Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    CAS  Google Scholar 

  5. 5.

    Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    CAS  Google Scholar 

  6. 6.

    Brus, L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

    CAS  Google Scholar 

  7. 7.

    Rao, V. G., Aslam, U. & Linic, S. Chemical requirement for extracting energetic charge carriers from plasmonic metal nanoparticles to perform electron-transfer reactions. J. Am. Chem. Soc. 141, 643–647 (2019).

    CAS  Google Scholar 

  8. 8.

    Butet, J., Brevet, P.-F. & Martin, O. J. F. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 9, 10545–10562 (2015).

    CAS  Google Scholar 

  9. 9.

    Celebrano, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 10, 412–417 (2015).

    CAS  Google Scholar 

  10. 10.

    Stuart, D. A., Haes, A. J., Yonzon, C. R., Hicks, E. M. & Duyne, R. P. V. Biological applications of localised surface plasmonic phenomenae. IEE Proc. Nanobiotechnol. 152, 13–32 (2005).

    CAS  Google Scholar 

  11. 11.

    Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009).

    CAS  Google Scholar 

  12. 12.

    Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12, 1000–1005 (2017).

    CAS  Google Scholar 

  13. 13.

    Ndukaife, J. C., Shalaev, V. M. & Boltasseva, A. Plasmonics—turning loss into gain. Science 351, 334–335 (2016).

    CAS  Google Scholar 

  14. 14.

    Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    CAS  Google Scholar 

  15. 15.

    Moskovits, M. The case for plasmon-derived hot carrier devices. Nat. Nanotechnol. 10, 6–8 (2015).

    CAS  Google Scholar 

  16. 16.

    Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    CAS  Google Scholar 

  17. 17.

    Nozieres, P. Theory of Quantum Liquids (CRC Press, 2018).

  18. 18.

    Kubo, A. et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5, 1123–1127 (2005).

    CAS  Google Scholar 

  19. 19.

    Yannouleas, C. & Broglia, R. A. Landau damping and wall dissipation in large metal clusters. Ann. Phys. 217, 105–141 (1992).

    CAS  Google Scholar 

  20. 20.

    Bohren, C. F. How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323–327 (1983).

    CAS  Google Scholar 

  21. 21.

    Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    CAS  Google Scholar 

  22. 22.

    Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015).

    CAS  Google Scholar 

  23. 23.

    Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011).

    CAS  Google Scholar 

  24. 24.

    Abelès, F. Optical Properties of Solids (Elsevier, 1972).

  25. 25.

    Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    CAS  Google Scholar 

  26. 26.

    Kambhampati, P., Child, C. M., Foster, M. C. & Campion, A. On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. J. Chem. Phys. 108, 5013–5026 (1998).

    CAS  Google Scholar 

  27. 27.

    Khurgin, J. B. & Levy, U. Generating hot carriers in plasmonic nanoparticles: when quantization does matter? ACS Photon. 7, 547–553 (2020).

    CAS  Google Scholar 

  28. 28.

    Trolle, M. L. & Pedersen, T. G. Indirect optical absorption in silicon via thin-film surface plasmon. J. Appl. Phys. 112, 043103 (2012).

    Google Scholar 

  29. 29.

    Khurgin, J. B. & Sun, G. Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl. Phys. Lett. 99, 211106 (2011).

    Google Scholar 

  30. 30.

    Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016).

    CAS  Google Scholar 

  31. 31.

    Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016).

    CAS  Google Scholar 

  32. 32.

    Foerster, B., Spata, V. A., Carter, E. A., Sönnichsen, C. & Link, S. Plasmon damping depends on the chemical nature of the nanoparticle interface. Sci. Adv. 5, eaav0704 (2019).

    CAS  Google Scholar 

  33. 33.

    Sundararaman, R., Narang, P., Jermyn, A. S., Goddard, W. A. III & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014).

    CAS  Google Scholar 

  34. 34.

    Narang, P., Sundararaman, R. & Atwater, H. A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5, 96–111 (2016).

    CAS  Google Scholar 

  35. 35.

    Chavez, S., Aslam, U. & Linic, S. Design principles for directing energy and energetic charge flow in multicomponent plasmonic nanostructures. ACS Energy Lett. 3, 1590–1596 (2018).

    CAS  Google Scholar 

  36. 36.

    Christopher, P. & Moskovits, M. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem. 68, 379–398 (2017).

    CAS  Google Scholar 

  37. 37.

    Chavez, S., Govind Rao, V. & Linic, S. Unearthing the factors governing site specific rates of electronic excitations in multicomponent plasmonic systems and catalysts. Faraday Discuss. 214, 441–453 (2019).

    CAS  Google Scholar 

  38. 38.

    Tan, S. et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photon. 11, 806–812 (2017).

    CAS  Google Scholar 

  39. 39.

    Foerster, B. et al. Interfacial states cause equal decay of plasmons and hot electrons at gold–metal oxide interfaces. Nano Lett. 20, 3338–3343 (2020).

    CAS  Google Scholar 

  40. 40.

    Engelbrekt, C., Crampton, K. T., Fishman, D. A., Law, M. & Apkarian, V. A. Efficient plasmon-mediated energy funneling to the surface of Au@Pt core–shell nanocrystals. ACS Nano 14, 5061–5074 (2020).

    CAS  Google Scholar 

  41. 41.

    Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015).

    CAS  Google Scholar 

  42. 42.

    Foerster, B. et al. Chemical interface damping depends on electrons reaching the surface. ACS Nano 11, 2886–2893 (2017).

    CAS  Google Scholar 

  43. 43.

    Hendrich, C. et al. Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning. Appl. Phys. B 76, 869–875 (2003).

    CAS  Google Scholar 

  44. 44.

    Stietz, F. et al. Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning. Phys. Rev. Lett. 84, 5644–5647 (2000).

    CAS  Google Scholar 

  45. 45.

    Ziegler, T., Hendrich, C., Hubenthal, F., Vartanyan, T. & Träger, F. Dephasing times of surface plasmon excitation in Au nanoparticles determined by persistent spectral hole burning. Chem. Phys. Lett. 386, 319–324 (2004).

    CAS  Google Scholar 

  46. 46.

    Therrien, A. J. et al. Impact of chemical interface damping on surface plasmon dephasing. Faraday Discuss. 214, 59–72 (2019).

    CAS  Google Scholar 

  47. 47.

    Moskovits, M. & DiLella, D. P. in Surface Enhanced Raman Scattering (eds Chang, R. K. & Furtak, T. E.) 243–273 (Springer, 1982).

  48. 48.

    Xu, H., Aizpurua, J., Käll, M. & Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318–4324 (2000).

    CAS  Google Scholar 

  49. 49.

    Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  Google Scholar 

  50. 50.

    Sivan, Y., Un, I. W. & Dubi, Y. Assistance of metal nanoparticles in photocatalysis – nothing more than a classical heat source. Faraday Discuss. 214, 215–233 (2019).

    CAS  Google Scholar 

  51. 51.

    Dubi, Y. & Sivan, Y. “Hot” electrons in metallic nanostructures—non-thermal carriers or heating? Light Sci. Appl. 8, 89 (2019).

    Google Scholar 

  52. 52.

    Tagliabue, G. et al. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. 9, 3394 (2018).

    Google Scholar 

  53. 53.

    Cortes et al. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 8, 14880 (2017).

    CAS  Google Scholar 

  54. 54.

    Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    CAS  Google Scholar 

  55. 55.

    Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    CAS  Google Scholar 

  56. 56.

    Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).

    CAS  Google Scholar 

  57. 57.

    Seemala, B. et al. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: hot electrons or near fields? ACS Energy Lett. 4, 1803–1809 (2019).

    CAS  Google Scholar 

  58. 58.

    Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018).

    CAS  Google Scholar 

  59. 59.

    Kim, Y., Smith, J. G. & Jain, P. K. Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem. 10, 763–769 (2018).

    CAS  Google Scholar 

  60. 60.

    Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).

    CAS  Google Scholar 

  61. 61.

    Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2014).

    CAS  Google Scholar 

  62. 62.

    Hartland, G. V., Besteiro, L. V., Johns, P. & Govorov, A. O. What’s so hot about electrons in metal nanoparticles? ACS Energy Lett. 2, 1641–1653 (2017).

    CAS  Google Scholar 

  63. 63.

    Jermyn, A. S. et al. Transport of hot carriers in plasmonic nanostructures. Phys. Rev. Mater. 3, 075201 (2019).

    CAS  Google Scholar 

  64. 64.

    Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    CAS  Google Scholar 

  65. 65.

    Hatch, S. R., Zhu, X. Y., White, J. M. & Campion, A. Photoinduced pathways to dissociation and desorption of dioxygen on silver (110) and platinum (111). J. Phys. Chem. 95, 1759–1768 (1991).

    CAS  Google Scholar 

  66. 66.

    Zhou, X.-L., Zhu, X.-Y. & White, J. M. Photochemistry at adsorbate/metal interfaces. Surface Sci. Rep. 13, 73–220 (1991).

    CAS  Google Scholar 

  67. 67.

    Denzler, D. N., Frischkorn, C., Hess, C., Wolf, M. & Ertl, G. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. 91, 226102 (2003).

    CAS  Google Scholar 

  68. 68.

    Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).

    Google Scholar 

  69. 69.

    Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018).

    CAS  Google Scholar 

  70. 70.

    Anisimov, S. I. & Rethfeld, B. Theory of ultrashort laser pulse interaction with a metal. In Nonresonant Laser-Matter Interaction (NLMI-9) Vol. 3093 (ed. Libenson, M. N.) 192–203 (International Society for Optics and Photonics, 1997).

  71. 71.

    Brown, A. M. et al. Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles. Phys. Rev. Lett. 118, 087401 (2017).

    Google Scholar 

  72. 72.

    Frischkorn, C. & Wolf, M. Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. Chem. Rev. 106, 4207–4233 (2006).

    CAS  Google Scholar 

  73. 73.

    An, X., Stelter, D., Keyes, T. & Reinhard, B. M. Plasmonic photocatalysis of urea oxidation and visible-light fuel cells. Chem 5, 2228–2242 (2019).

    CAS  Google Scholar 

  74. 74.

    Swearer, D. F. et al. Heterometallic antenna−reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016).

    CAS  Google Scholar 

  75. 75.

    Sytwu, K., Vadai, M. & Dionne, J. A. Bimetallic nanostructures: combining plasmonic and catalytic metals for photocatalysis. Adv. Phys. X 4, 1619480 (2019).

    CAS  Google Scholar 

  76. 76.

    Li, W. & Valentine, J. G. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 6, 177–191 (2017).

    Google Scholar 

  77. 77.

    Mali, S. S., Shim, C. S., Kim, H., Patil, P. S. & Hong, C. K. In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 8, 2664–2677 (2016).

    CAS  Google Scholar 

  78. 78.

    Li, Y. et al. Superior plasmonic photodetectors based on Au@MoS2 core–shell heterostructures. ACS Nano 11, 10321–10329 (2017).

    CAS  Google Scholar 

  79. 79.

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    CAS  Google Scholar 

  80. 80.

    Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

The work presented in this document was supported by the National Science Foundation (NSF) (CHE-1800197). Secondary support was provided by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0021362) (analysis of optical interactions of materials with light) and the Office of Basic Energy Science, Division of Chemical Sciences (DE-SC0021008) (materials synthesis).

Author information

Affiliations

Authors

Contributions

S.L. wrote the manuscript. All authors were involved in discussions, gathering of literature and figure design.

Corresponding author

Correspondence to Suljo Linic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Emiliano Cortés, Prineha Narang and Sebastian Schlücker for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021). https://doi.org/10.1038/s41563-020-00858-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing