Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Living materials with programmable functionalities grown from engineered microbial co-cultures

Abstract

Biological systems assemble living materials that are autonomously patterned, can self-repair and can sense and respond to their environment. The field of engineered living materials aims to create novel materials with properties similar to those of natural biomaterials using genetically engineered organisms. Here, we describe an approach to fabricating functional bacterial cellulose-based living materials using a stable co-culture of Saccharomyces cerevisiae yeast and bacterial cellulose-producing Komagataeibacter rhaeticus bacteria. Yeast strains can be engineered to secrete enzymes into bacterial cellulose, generating autonomously grown catalytic materials and enabling DNA-encoded modification of bacterial cellulose bulk properties. Alternatively, engineered yeast can be incorporated within the growing cellulose matrix, creating living materials that can sense and respond to chemical and optical stimuli. This symbiotic culture of bacteria and yeast is a flexible platform for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generating Syn-SCOBY co-cultures with S. cerevisiae and K. rhaeticus.
Fig. 2: Syn-SCOBYs can produce enzyme-functionalized BC materials.
Fig. 3: Modifying BC physical material properties.
Fig. 4: Syn-SCOBY materials can sense and respond.
Fig. 5: Optical patterning of enzymatically functionalized BC materials.

Similar content being viewed by others

Data availability

All produced data that support the main figures of this study are included in this published article. Data points for the mechanical and rheological tests are provided as Source data files. Additional data are available from the corresponding author upon request.

References

  1. Chen, A. Y., Zhong, C. & Lu, T. K. Engineering living functional materials. ACS Synth. Biol. 4, 8–11 (2015).

    Article  Google Scholar 

  2. Nguyen, P. Q. Synthetic biology engineering of biofilms as nanomaterials factories. Biochem. Soc. Trans. 45, 585–597 (2017).

    Article  CAS  Google Scholar 

  3. Nguyen, P. Q., Courchesne, N. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, e1704847 (2018).

    Article  Google Scholar 

  4. Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019).

    Article  CAS  Google Scholar 

  5. Blanco, L. P., Evans, M. L., Smith, D. R., Badtke, M. P. & Chapman, M. R. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol. 20, 66–73 (2012).

    Article  CAS  Google Scholar 

  6. Kalyoncu, E., Ahan, R. E., Olmez, T. T. & Safak Seker, U. O. Genetically encoded conductive protein nanofibers secreted by engineered cells. RSC Adv. 7, 32543–32551 (2017).

    Article  CAS  Google Scholar 

  7. Seker, U. O. S., Chen, A. Y., Citorik, R. J. & Lu, T. K. Synthetic biogenesis of bacterial amyloid nanomaterials with tunable inorganic-organic interfaces and electrical conductivity. ACS Synth. Biol. 6, 266–275 (2017).

    Article  CAS  Google Scholar 

  8. Dorval Courchesne, N.-M. et al. Biomimetic engineering of conductive curli protein film. Nanotechnology 29, 509501 (2018).

    Article  Google Scholar 

  9. Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523 (2014).

    Article  CAS  Google Scholar 

  10. Moser, F., Voigt, C. A., Tham, E., González, L. M. & Lu, T. K. Light-controlled, high-resolution patterning of living engineered bacteria onto textiles, ceramics, and plastic. Adv. Funct. Mater. 29, 1901788 (2019).

    Article  Google Scholar 

  11. Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R. & Joshi, N. S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).

    Article  CAS  Google Scholar 

  12. Nussbaumer, M. G. et al. Bootstrapped biocatalysis: Biofilm-derived materials as reversibly functionalizable multienzyme surfaces. ChemCatChem 9, 4328–4333 (2017).

    Article  CAS  Google Scholar 

  13. Duraj-Thatte, A. M. et al. Genetically programmable self‐regenerating bacterial hydrogels. Adv. Mater. 31, e1901826 (2019).

    Article  Google Scholar 

  14. Dorval Courchesne, N.-M., Duraj-Thatte, A., Tay, P. K. R., Nguyen, P. Q. & Joshi, N. S. Scalable production of genetically engineered nanofibrous macroscopic materials via filtration. ACS Biomater. Sci. Eng. 3, 733–741 (2016).

    Article  Google Scholar 

  15. Park, S. J. et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158–162 (2016).

    Article  CAS  Google Scholar 

  16. Van Tittelboom, K., De Belie, N., De Muynck, W. & Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40, 157–166 (2010).

    Article  Google Scholar 

  17. Wang, J., Van Tittelboom, K., De Belie, N. & Verstraete, W. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr. Build. Mater. 26, 532–540 (2012).

    Article  Google Scholar 

  18. Gerber, L. C., Koehler, F. M., Grass, R. N. & Stark, W. J. Incorporating microorganisms into polymer layers provides bioinspired functional living materials. Proc. Natl Acad. Sci. USA 109, 90–94 (2012).

    Article  CAS  Google Scholar 

  19. Gerber, L. C., Koehler, F. M., Grass, R. N. & Stark, W. J. Incorporation of penicillin-producing fungi into living materials to provide chemically active and antibiotic-releasing surfaces. Angew. Chem. Int. Ed. 124, 11455–11458 (2012).

    Article  Google Scholar 

  20. Liu, X. et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc. Natl Acad. Sci. USA 114, 2200–2205 (2017).

    Article  CAS  Google Scholar 

  21. Chawla, P. R., Bajaj, I. B., Survase, S. A. & Singhal, R. S. Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol. 47, 107–124 (2009).

    CAS  Google Scholar 

  22. Huang, Y. et al. Recent advances in bacterial cellulose. Cellulose 21, 1–30 (2014).

    Article  Google Scholar 

  23. Hsieh, Y. C., Yano, H., Nogi, M. & Eichhorn, S. J. An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15, 507–513 (2008).

    Article  CAS  Google Scholar 

  24. Kondo, T., Rytczak, P. & Bielecki, S. in Bacterial Nanocellulose (eds. Gama, M. et al.) 59–71 (Elsevier, 2016).

  25. Wang, J., Tavakoli, J. & Tang, Y. Bacterial cellulose production, properties and applications with different culture methods – a review. Carbohydr. Polym. 219, 63–76 (2019).

    Article  CAS  Google Scholar 

  26. Ludwicka, K., Jedrzejczak-Krzepkowska, M., Kubiak, K., Kolodziejczyk, M. & Pankiewicz, T. in Bacterial Nanocellulose (eds. Gama, M. et al.) 145–165 (Elsevier, 2016).

  27. Yadav, V. et al. Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered gluconacetobacter xylinus. Appl. Environ. Microbiol. 76, 6257–6265 (2010).

    Article  CAS  Google Scholar 

  28. Fang, J., Kawano, S., Tajima, K. & Kondo, T. In vivo curdlan/cellulose bionanocomposite synthesis by genetically modified Gluconacetobacter xylinus. Biomacromolecules 16, 3154–3160 (2015).

    Article  CAS  Google Scholar 

  29. Gwon, H. et al. A safe and sustainable bacterial cellulose nanofiber separator for lithium rechargeable batteries. Proc. Natl Acad. Sci. USA 116, 19288–19293 (2019).

    Article  CAS  Google Scholar 

  30. Florea, M. et al. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proc. Natl Acad. Sci. USA 113, E3431–E3440 (2016).

    Article  CAS  Google Scholar 

  31. Teh, M. Y. et al. An expanded synthetic biology toolkit for gene expression control in Acetobacteraceae. ACS Synth. Biol. 8, 708–723 (2019).

    Article  CAS  Google Scholar 

  32. Jacek, P., Ryngajłło, M. & Bielecki, S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl. Microbiol. Biotechnol. 103, 5339–5353 (2019).

    Article  CAS  Google Scholar 

  33. Walker, K. T., Goosens, V. J., Das, A., Graham, A. E. & Ellis, T. Engineered cell-to-cell signalling within growing bacterial cellulose pellicles. Microb. Biotechnol. 12, 611–619 (2018).

    Article  Google Scholar 

  34. Jayabalan, R., Malini, K., Sathishkumar, M., Swaminathan, K. & Yun, S. E. Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Sci. Biotechnol. 19, 843–847 (2010).

    Article  CAS  Google Scholar 

  35. Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A highly-characterized yeast toolkit for modular, multi-part assembly. ACS Synth. Biol. 4, 975–986 (2015).

    Article  CAS  Google Scholar 

  36. Ong, E., Gilkes, N. R., Miller, R. C., Warren, R. A. & Kilburn, D. G. The cellulose-binding domain (CBD(Cex)) of an exoglucanase from Cellulomonas fimi: production in Escherichia coli and characterization of the polypeptide. Biotechnol. Bioeng. 42, 401–409 (1993).

    Article  CAS  Google Scholar 

  37. Antošová, Z., Herkommerová, K., Pichová, I. & Sychrová, H. Efficient secretion of three fungal laccases from Saccharomyces cerevisiae and their potential for decolorization of textile industry effluent – a comparative study. Biotechnol. Prog. 34, 69–80 (2018).

    Article  Google Scholar 

  38. Villares, A. et al. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci. Rep. 7, 40262 (2017).

    Article  CAS  Google Scholar 

  39. Lee, C.-R. et al. Co-fermentation using recombinant Saccharomyces cerevisiae yeast strains hyper-secreting different cellulases for the production of cellulosic bioethanol. Sci. Rep. 7, 4428 (2017).

    Article  Google Scholar 

  40. Bhagia, S., Dhir, R., Kumar, R. & Wyman, C. E. Deactivation of cellulase at the air–liquid interface is the main cause of incomplete cellulose conversion at low enzyme loadings. Sci. Rep. 8, 1350 (2018).

    Article  Google Scholar 

  41. Yamanaka, S. et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mater. Sci. 24, 3141–3145 (1989).

    Article  CAS  Google Scholar 

  42. Soykeabkaew, N., Sian, C., Gea, S., Nishino, T. & Peijs, T. All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16, 435–444 (2009).

    Article  CAS  Google Scholar 

  43. Shi, X., Zheng, F., Pan, R., Wang, J. & Ding, S. Engineering and comparative characteristics of double carbohydrate binding modules as a strength additive for papermaking applications. Bioresources 9, 3117–3131. (2014).

    Article  Google Scholar 

  44. Butchosa, N., Leijon, F., Bulone, V. & Zhou, Q. Stronger cellulose microfibril network structure through the expression of cellulose-binding modules in plant primary cell walls. Cellulose 26, 3083–3094 (2019).

    Article  CAS  Google Scholar 

  45. McIsaac, R. S., Gibney, P. A., Chandran, S. S., Benjamin, K. R. & Botstein, D. Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae. Nucleic Acids Res. 42, e48 (2014).

    Article  CAS  Google Scholar 

  46. McIsaac, R. S. et al. Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae. Mol. Biol. Cell 22, 4447–4459 (2011).

    Article  CAS  Google Scholar 

  47. Pothoulakis, G. & Ellis, T. Synthetic gene regulation for independent external induction of the Saccharomyces cerevisiae pseudohyphal growth phenotype. Commun. Biol. 1, 7 (2018).

    Article  Google Scholar 

  48. Ostrov, N. et al. A modular yeast biosensor for low-cost point-of-care pathogen detection. Sci. Adv. 3, e1603221 (2017).

    Article  Google Scholar 

  49. Cardinal-Watkins, C. & Nicell, J. A. Enzyme-catalyzed oxidation of 17β-estradiol using immobilized laccase from trametes versicolor. Enzyme Res. 2011, 725172 (2011).

    Article  Google Scholar 

  50. Adeel, M., Song, X., Wang, Y., Francis, D. & Yang, Y. Environmental impact of estrogens on human, animal and plant life: a critical review. Environ. Int. 99, 107–119 (2017).

    Article  CAS  Google Scholar 

  51. Avar, P. et al. β-Estradiol and ethinyl-estradiol contamination in the rivers of the Carpathian Basin. Environ. Sci. Pollut. Res. 23, 11630–11638 (2016).

    Article  CAS  Google Scholar 

  52. Pathak, G. P., Strickland, D., Vrana, J. D. & Tucker, C. L. Benchmarking of optical dimerizer systems. ACS Synth. Biol. 3, 832–838 (2014).

    Article  CAS  Google Scholar 

  53. Jarque, S., Bittner, M., Blaha, L. & Hilscherova, K. Yeast biosensors for detection of environmental pollutants: current state and limitations. Trends Biotechnol. 34, 408–419 (2016).

    Article  CAS  Google Scholar 

  54. Adeniran, A., Stainbrook, S., Bostick, J. & Tyo, K. Detection of a peptide biomarker by engineered yeast receptors. ACS Synth. Biol. 7, 696–705 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Pothoulakis, C. Bricio-Garberi, B. E. Wolfe and E. Landis for advice and discussions, J. van der Hilst for contributions to co-culture methods and B. An for assisting with photo taking. Work at Imperial College London was funded by UK Engineering and Physical Sciences Research Council (EPSRC) awards EP/M002306/1 and EP/N026489/1 and an Imperial College London President’s Scholarship to C.G. W.O. was supported by a research fellowship (OT 577/1-1) from the German Research Foundation (DFG). Work at MIT was funded by Army Research Office award W911NF-11-1-0281 and Institute for Soldier Nanotechnologies award W911NF-13-D-0001, T.O. 4. T.C.T. was supported by the MIT J-WAFS Fellowship. Work across both institutions was funded by the MIT-MISTI MIT-Imperial College London Seed Fund.

Author information

Authors and Affiliations

Authors

Contributions

C.G., T.-C.T. and T.E. conceived and designed the experiments. C.G., T.-C.T. and W.O. performed the Syn-SCOBY co-culture characterization experiments. C.G. performed the BC functionalization and biosensor experiments. T.-C.T. performed yeast incorporation, BC material property modification and optical-patterning experiments. B.A.D. generated yeast strains for optical patterning. W.M.S. generated yeast biosensor strains and genetic tools. G.L.S. performed the eSEM experiments. T.K.L. and T.E. supervised the project and C.G., T.-C.T., W.O. and T.E. wrote the manuscript.

Corresponding authors

Correspondence to Timothy K. Lu or Tom Ellis.

Ethics declarations

Competing interests

C.G., T.-C.T., W.O., T.K.L. and T.E. are co-inventors on patent applications (International Patent Application no. PCT/US2020/047330) filed by MIT and Imperial College London relating to all the work covered in this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, Tables 1–4, text and references.

Reporting Summary

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilbert, C., Tang, TC., Ott, W. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691–700 (2021). https://doi.org/10.1038/s41563-020-00857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00857-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research