Abstract
Triple ionic–electronic conductors (TIECs) are materials that can simultaneously transport electronic species alongside two ionic species. The recent emergence of TIECs provides intriguing opportunities to maximize performance in a variety of electrochemical devices, including fuel cells, membrane reactors and electrolysis cells. However, the potential application of these nascent materials is limited by lack of fundamental knowledge of their transport properties and electrocatalytic activity. The goal of this Review is to summarize and analyse the current understanding of TIEC transport and electrochemistry in single-phase materials, including defect formation and conduction mechanisms. We particularly focus on the discovery criteria (for example, crystal structure and ion electronegativity), design principles (for example, cation and anion substitution chemistry) and operating conditions (for example, atmosphere) of materials that enable deliberate tuning of the conductivity of each charge carrier. Lastly, we identify important areas for further advances, including higher chemical stability, lower operating temperatures and discovery of n-type TIEC materials.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells
Nano-Micro Letters Open Access 09 November 2022
-
Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst
Communications Chemistry Open Access 17 August 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Sun, C., Hui, R. & Roller, J. Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14, 1125–1144 (2010).
Baumann, F. S., Maier, J. & Fleig, J. The polarization resistance of mixed conducting SOFC cathodes: a comparative study using thin film model electrodes. Solid State Ionics 179, 1198–1204 (2008).
Tao, S. & Irvine, J. T. S. Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Chem. Rec. 4, 83–95 (2004).
Fabbri, E., Pergolesi, D. & Traversa, E. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 39, 4355 (2010).
Duan, C. et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015).
An, H. et al. A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600°C. Nat. Energy 3, 870–875 (2018).
Li, W. et al. High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell. J. Mater. Chem. A 6, 18057–18066 (2018).
Zhang, Y. et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C. Adv. Mater. 29, 1700132 (2017).
Choi, S. et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3, 202–210 (2018).
Sun, X., Simonsen, S. C., Norby, T. & Chatzitakis, A. Composite membranes for high temperature PEM fuel cells and electrolysers: a critical review. Membranes 9, 83 (2019).
O’Hayre, R., Cha, S.-W., Colella, W. & Prinz, F. B. Fuel Cell Fundamentals (Wiley, 2009).
Wang, L., Merkle, R. & Maier, J. Surface kinetics and mechanism of oxygen incorporation into Ba1−xSrxCoyFe1−yO3−δ SOFC microelectrodes. J. Electrochem. Soc. 157, B1802–B1808 (2010).
Tong, J., Duan, C., Hook, D., Chen, Y. & Tong, J. Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500°C. Energy Environ. Sci. 176, 176–182 (2017).
Xia, C. et al. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3–δ into an electrolyte for low-temperature solid oxide fuel cells. Nat. Commun. 10, 1707 (2019).
Li, X. et al. Redox inactive ion meliorated BaCo0.4Fe0.4Zr0.1Y0.1O3−δ perovskite oxides as efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 6, 17288–17296 (2018).
Duan, C. et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4, 230–240 (2019).
Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).
Muñoz-García, A. B. & Pavone, M. K-doped Sr2Fe1.5Mo0.5O6−δ predicted as a bifunctional catalyst for air electrodes in proton-conducting solid oxide electrochemical cells. J. Mater. Chem. A 5, 12735–12739 (2017).
Kee, R. J. et al. Modeling the steady-state and transient response of polarized and non-polarized proton-conducting doped-perovskite membranes. J. Electrochem. Soc. 160, 290–300 (2013).
Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).
Demin, A. K., Gorbova, E. V., Glumov, M. V. & Tsiakaras, P. E. Charge transfer in mixed proton, oxygen ion and electron solid oxide conductor. Ionics 11, 289–293 (2005).
Virkar, A. V. Transport of H2, O2 and H2O through single-phase, two-phase and multi-phase mixed proton, oxygen ion, and electron hole conductors. Solid State Ionics 140, 275–283 (2001).
Sanders, M. D. & O’Hayre, R. P. Coupled transport and uphill permeation of steam and oxygen in a dense ceramic membrane. J. Memb. Sci. 376, 96–101 (2011).
Kreuer, K. D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125, 285–302 (1999).
Cherry, M., Islam, M. S. & Catlow, C. R. A. Oxygen ion migration in perovskite-type oxides. J. Solid State Chem. 118, 125–132 (1995).
Chroneos, A., Yildiz, B., Tarancón, A., Parfitt, D. & Kilner, J. A. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ. Sci. 4, 2774 (2011).
De Souza, R. A. Limits to the rate of oxygen transport in mixed-conducting oxides. J. Mater. Chem. A 5, 20334–20350 (2017).
Schirmer, O. F. O− bound small polarons in oxide materials. J. Phys. Condens. Matter 18, R667–R704 (2006).
Rettie, A. J. E., Chemelewski, W. D., Emin, D. & Mullins, C. B. Unravelling small-polaron transport in metal oxide photocatalysts. J. Phys. Chem. Lett 7, 27 (2016).
Neagu, D. & Irvine, J. T. S. Enhancing electronic conductivity in strontium titanates through correlated A and B-site doping. Chem. Mater 23, 1607–1617 (2011).
Raccah, P. M. & Goodenough, J. B. A localized-electron to collective-electron transition in the system (La, Sr)CoO3. J. Appl. Phys. 39, 1209–1210 (1968).
He, T., Kreuer, K. D., Baikov, Y. M. & Maier, J. Impedance spectroscopic study of thermodynamics and kinetics of a Gd-doped BaCeO3 single crystal. Solid State Ionics 95, 301–308 (1997).
Tai, L., Nasrallah, M., Anderson, H., Sparlin, D. & Sehlin, S. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ionics 76, 259–271 (1995).
Raffaelle, R., Anderson, H. U., Sparlin, D. M. & Parris, P. E. Evidence for a crossover from multiple trapping to percolation in the high-temperature electrical conductivity of Mn-doped LaCrO3. Phys. Rev. Lett. 65, 1383–1386 (1990).
Liu, X. et al. Lattice characteristics, structure stability and oxygen permeability of BaFe1−xYxO3−δ ceramic membranes. J. Memb. Sci. 383, 235–240 (2011).
Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973).
Kim, D., Miyoshi, S., Tsuchiya, T. & Yamaguchi, S. Percolation conductivity in BaZrO3–BaFeO3 solid solutions. Solid State Ionics 262, 875–878 (2014).
Duckers, L. I. Percolation with nearest neighbour interaction. Phys. Lett. 67A, 93–94 (1978).
Azad, A. K. & Irvine, J. T. S. High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3–δ. Solid State Ionics 179, 678–682 (2008).
Sherafat, Z. et al. Modeling of electrical conductivity in the proton conductor Ba0.85K0.15ZrO3–δ. Electrochim. Acta 165, 443–449 (2015).
Katahira, K., Kohchi, Y., Shimura, T. & Iwahara, H. Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138, 91–98 (2000).
Grimaud, A. et al. Hydration properties and rate determining steps of the oxygen reduction reaction of perovskite-related oxides as H+-SOFC cathodes. J. Electrochem. Soc. 159, B683–B694 (2012).
Fabbri, E., Bi, L., Pergolesi, D. & Traversa, E. Towards the next generation of solid oxide fuel cells operating below 600°C with chemically stable proton-conducting electrolytes. Adv. Mater. 24, 195–208 (2012).
Chen, D., Chen, C., Baiyee, Z. M., Shao, Z. & Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115, 9869–9921 (2015).
Poetzsch, D., Merkle, R. & Maier, J. Oxygen reduction at dense thin-film microelectrodes on a proton-conducting electrolyte. I. Considerations on reaction mechanism and electronic leakage effects. J. Electrochem. Soc. 162, 939–950 (2015).
De Souza, R. A. & Kilner, J. A. Oxygen transport in La1–xSrxMn1–yCoyO3±δ perovskites. Part II. Oxygen surface exchange. Solid State Ionics 126, 153–161 (1999).
Kilner, J. A., De Souza, R. A. & Fullarton, I. C. Surface exchange of oxygen in mixed conducting perovskite oxides. Solid State Ionics 86–88, 703–709 (1996).
De Souza, R. A. A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. Phys. Chem. Chem. Phys. 8, 890–897 (2006).
Sakai, N. et al. Significant effect of water on surface reaction and related electrochemical properties of mixed conducting oxides. Solid State Ionics 175, 387–391 (2004).
Sakai, N. et al. Effect of water on oxygen transport properties on electrolyte surface in SOFCs. I. Surface reaction mechanism of oxygen isotope exchange on solid oxide electrolytes. J. Electrochem. Soc. 150, A689–A694 (2003).
Liu, R. R. et al. Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes. J. Power Sources 196, 7090–7096 (2011).
Kim, S. H. et al. Degradation of solid oxide fuel cell cathodes accelerated at a high water vapor concentration. J. Fuel Cell Sci. Technol. 7, 021011 (2010).
Hayashi, H. et al. Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 122, 1–15 (1999).
Kilner, J. A. & Brook, R. J. A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 6, 237–252 (1982).
Islam, M. Computer modelling of defects and transport in perovskite oxides. Solid State Ionics 154–155, 75–85 (2002).
Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).
Norby, T. in Perovskite Oxide for Solid Oxide Fuel Cells (ed. Ishihara, T.) 217–241 (Springer, 2009).
Taskin, A. A., Lavrov, A. N. & Ando, Y. Achieving fast oxygen diffusion in perovskites by cation ordering. Appl. Phys. Lett 86, 91910 (2005).
Bernuy-Lopez, C. et al. Effect of cation ordering on the performance and chemical stability of layered double perovskite cathodes. Materials 11, 196 (2018).
Parfitt, D., Chroneos, A., Taranc, A. & Kilner, J. A. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ. J. Mater. Chem. 21, 2183–2186 (2011).
Zohourian, R., Merkle, R., Raimondi, G. & Maier, J. Mixed-conducting perovskites as cathode materials for protonic ceramic fuel cells: understanding the trends in proton uptake. Adv. Funct. Mater. 28, 1801241 (2018).
Arulraj, A., Goutenoire, F., Tabellout, M., Bohnke, O. & Lacorre, P. Synthesis and characterization of the anionic conductor system La2Mo2O9–0.5xFx (x = 0.02−0.30). Chem. Mater. 14, 2492–2498 (2002).
Animitsa, I., Tarasova, N. & Filinkova, Y. Electrical properties of the fluorine-doped Ba2In2O5. Solid State Ionics 207, 29–37 (2012).
Gibbs, G. V., Hilí, F. C., Boisen, M. B. & Downs, R. T. Power law relationships between bond length, bond strength and electron density distributions. Phys. Chem. Miner. 25, 585–590 (1998).
Zhang, Z., Zhu, Y., Zhong, Y., Zhou, W. & Shao, Z. Anion doping: a new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv. Energy Mater. 7, 1700242 (2017).
Zhao, H. et al. Investigation of mixed conductor BaCo0.7Fe0.3−xYxO3−δ with high oxygen permeability. J. Phys. Chem. C 114, 17975–17981 (2010).
Suntivich, J. & Shao-Horn, Y. Trend in oxygen reduction reaction on transition metal oxide surfaces. ECS Trans. 58, 715–726 (2013).
Muñoz-García, A. B. & Pavone, M. From oxide to proton conduction: a quantum-chemical perspective on the versatility of Sr2Fe1.5Mo0.5O6−δ-based materials. Int. J. Quantum Chem. 116, 1501–1506 (2016).
Cook, R. L. & Sammells, A. F. On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells. Solid State Ionics 45, 311–321 (1991).
Belova, K., Baskakova, S., Argirusis, C. & Animitsa, I. The effect of F−-doping on the conductivity of proton conductor Ba4Ca2Nb2O11. Electrochim. Acta 193, 63–71 (2016).
Poetzsch, D., Merkle, R. & Maier, J. Proton uptake in the H+-SOFC cathode material Ba0.5Sr0.5Fe0.8Zn0.2O3–δ transition from hydration to hydrogenation with increasing oxygen partial pressure. Faraday Discuss. 182, 129–143 (2015).
Lee, Y.-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011).
Peng, R., Wu, T., Liu, W., Liu, X. & Meng, G. Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. J. Mater. Chem. 20, 6218–6225 (2010).
Fabbri, E., Pergolesi, D. & Traversa, E. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells. Sci. Technol. Adv. Mater. 11, 044301 (2010).
Fabbri, E., Markus, I., Bi, L., Pergolesi, D. & Traversa, E. Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs. Solid State Ionics 202, 30–35 (2011).
Wang, Y., Wang, H., Liu, T., Chen, F. & Xia, C. Improving the chemical stability of BaCe0.8Sm0.2O3−δ electrolyte by Cl doping for proton-conducting solid oxide fuel cell. Electrochem. Commun. 28, 87–90 (2013).
Wang, Y. et al. A2–αA′αBO4-type oxides as cathode materials for IT-SOFCs (A = Pr, Sm; A′ = Sr; B = Fe, Co). Mater. Lett. 60, 1174–1178 (2006).
Tarasova, N. A. & Animitsa, I. E. Effect of anion doping on mobility of ionic charge carriers in solid solutions based on Ba2In2O5. Russ. J. Electrochem. 49, 698–703 (2013).
Lagaeva, J., Medvedev, D., Demin, A. & Tsiakaras, P. Insights on thermal and transport features of BaCe0.8–xZrxY0.2O3–δ proton-conducting materials. J. Power Sources 278, 436–444 (2015).
Kharton, V. V., Viskup, A. P., Naumovich, E. N. & Lapchuk, N. M. Mixed electronic and ionic conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni). I. Oxygen transport in perovskites LaCoO3–LaGaO3. Solid State Ionics 104, 67–78 (1997).
Walsh, A. & Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater. 16, 964–967 (2017).
Zohourian, R., Merkle, R. & Maier, J. Proton uptake into the protonic cathode material BaCo0.4Fe0.4Zr0.2O3–δ and comparison to protonic electrolyte materials. Solid State Ionics 299, 64–69 (2017).
Deng, Z., Zhang, G., Liu, W., Peng, D. & Chen, C. Phase composition, oxidation state and electrical conductivity of SrFe1.5−xCoxOy. Solid State Ionics 152–153, 735–739 (2002).
Muñoz-García, A. B. & Pavone, M. First-principles design of new electrodes for proton-conducting solid-oxide electrochemical cells: A-site doped Sr2Fe1.5Mo0.5O6−δ perovskite. Chem. Mater. 28, 490–500 (2016).
Xu, X. et al. Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 7, 20624–20632 (2019).
Strandbakke, R. et al. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics 278, 120–132 (2015).
Ge, L. et al. Properties and performance of A-site deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ for oxygen permeating membrane. J. Memb. Sci. 306, 318–328 (2007).
Guo, Y., Ran, R., Shao, Z. & Liu, S. Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of Ba1±xCe0.4Zr0.4Y0.2O3−δ (0≤x≤0.20) proton conductors. Int. J. Hydrogen Energy 36, 8450–8460 (2011).
Yamazaki, Y., Hernandez-Sanchez, R. & Haile, S. M. Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity. J. Mater. Chem. 20, 8158–8166 (2010).
Tarasova, N., Animitsa, I., Denisova, T. & Nevmyvako, R. The influence of fluorine doping on short-range structure in brownmillerite Ba1.95In2O4.9F0.1. Solid State Ionics 275, 47–52 (2015).
Tarasova, N. & Animitsa, I. Novel proton-conducting oxyfluorides Ba4−0.5xIn2Zr2O11−xFx with perovskite structure. Solid State Ionics 264, 69–75 (2014).
Tarasova, N. A. et al. Features of the local structure of hydrated fluorine-substituted solid solutions based on Ba2In2O5. Bull. Russ. Acad. Sci. Phys. 78, 730–732 (2014).
Zhu, X. & Yang, W. Mixed Conducting Ceramic Membranes: Fundamentals, Materials and Applications 95–143 (Springer, 2017).
Pérez-Coll, D., Heras-Juaristi, G., Fagg, D. P. & Mather, G. C. Methodology for the study of mixed transport properties of a Zn-doped SrZr0.9Y0.1O3−δ electrolyte under reducing conditions. J. Mater. Chem. A 3, 11098–11110 (2015).
Zhu, H. et al. Defect incorporation and transport within dense BaZr0.8Y0.2O3−δ (BZY20) proton-conducting membranes. J. Electrochem. Soc. 165, 581–588 (2018).
Fontaine, M.-L., Norby, T., Larring, Y., Grande, T. & Bredesen, R. in Membrane Science and Technology Series (eds. Mallada, R. & Menéndez, M.) 401–446 (Elsevier, 2008).
Balachandran, J., Lin, L., Anchell, J. S., Bridges, C. A. & Ganesh, P. Defect genome of cubic perovskites for fuel cell applications. J. Phys. Chem. C 121, 26637–26647 (2017).
Liang, L., Wencong, L. & Nianyi, C. On the criteria of formation and lattice distortion of perovskite-type complex halides. J. Phys. Chem. Solids 65, 855–860 (2004).
Yokokawa, H., Sakai, N., Kawada, T. & Dokiya, M. Thermodynamic stability of perovskites and related compounds in some alkaline earth-transition metal-oxygen systems. J. Solid State Chem. 94, 106–120 (1991).
Li, D., Lv, H., Kang, Y., Markovic, N. M. & Stamenkovic, V. R. Progress in the development of oxygen reduction reaction catalysts for low-temperature fuel cells. Annu. Rev. Chem. Biomol. Eng. 7, 509–532 (2016).
Cho, Y., Ogawa, M., Oikawa, I., Tuller, H. L. & Takamura, H. Stabilizing coexisting n-type electronic and oxide ion conductivities in donor-doped Ba-In-based oxides under oxidizing conditions: roles of oxygen disorder and electronic structure. Chem. Mater. 31, 2713–2722 (2019).
Irvine, J. T. S. in Perovskite Oxide for Solid Oxide Fuel Cells (ed. Ishihara, T.) 167–182 (Springer, 2009).
Gore, C. M., White, J. O., Wachsman, E. D. & Thangadurai, V. Effect of composition and microstructure on electrical properties and CO2 stability of donor-doped, proton conducting BaCe1−(x+y)ZrxNbyO3. J. Mater. Chem. A 2, 2363–2373 (2014).
Van de Walle, C. G. & Neugebauer, J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626–628 (2003).
Van de Walle, C. G. & Neugebauer, J. Hydrogen in semiconductors. Annu. Rev. Mater. Res. 36, 179–198 (2006).
Li, S. et al. Intrinsic energy band alignment of functional oxides. Phys. Status Solidi RRL 8, 571–576 (2014).
Robertson, J. Band offsets, Schottky barrier heights, and their effects on electronic devices. J. Vac. Sci. Technol. A 31, 050821 (2013).
Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).
Goyal, A., Gorai, P., Peng, H., Lany, S. & Stevanović, V. A computational framework for automation of point defect calculations. Comput. Mater. Sci. 130, 1–9 (2017).
Goyal, A. & Stevanović, V. Metastable rocksalt ZnO is p-type dopable. Phys. Rev. Mater. 2, 084603 (2018).
Lai, W. & Haile, S. M. Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).
Jamnik, J. & Maier, J. Treatment of the impedance of mixed conductors: equivalent circuit model and explicit approximate solutions. J. Electrochem. Soc. 146, 4183–4188 (1999).
Schichlein, H., Muller, A. C., Voigts, M., Krugel, A. & Ivers-Tiffée, E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J. Appl. Electrochem. 32, 875–882 (2002).
Ciucci, F. & Chen, C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach. Electrochim. Acta 167, 439–454 (2015).
Chen, Y. et al. Investigate the proton uptake process of proton/oxygen ion/hole triple conductor BaCo0.4Fe0.4Zr0.1Y0.1O3–δ by electrical conductivity relaxation. J. Power Sources 440, 227122 (2019).
Lane, J. A. & Kilner, J. A. Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation. Solid State Ionics 136–137, 997–1001 (2000).
Yoo, H.-I. & Lee, C.-E. Conductivity relaxation patterns of mixed conductor oxides under a chemical potential gradient. Solid State Ionics 180, 326–337 (2009).
Boukamp, B. A., den Otter, M. W. & Bouwmeester, H. J. M. Transport processes in mixed conducting oxides: combining time domain experiments and frequency domain analysis. J. Solid State Electrochem. 8, 592–598 (2004).
den Otter, M. W., Bouwmeester, H. J. M., Boukamp, B. A. & Verweij, H. Reactor flush time correction in relaxation experiments. J. Electrochem. Soc. 148, J1–J6 (2001).
Kim, G., Wang, S., Jacobson, A. J. & Chen, C. L. Measurement of oxygen transport kinetics in epitaxial La2NiO4+δ thin films by electrical conductivity relaxation. Solid State Ionics 177, 1461–1467 (2006).
Yoo, H.-I., Yoon, J.-Y., Ha, J.-S. & Lee, C.-E. Hydration and oxidation kinetics of a proton conductor oxide, SrCe0.95Yb0.05O2.975. Phys. Chem. Chem. Phys. 10, 974–982 (2008).
Yeh, T. C., Routbort, J. L. & Mason, T. O. Oxygen transport and surface exchange properties of Sr0.5Sm0.5CoO3−δ. Solid State Ionics 232, 138–143 (2013).
Grimaud, A. et al. Oxygen reduction reaction of PrBaCo2-xFexO5+δ compounds as H+-SOFC cathodes: correlation with physical properties. J. Mater. Chem. A 2, 3594–3604 (2014).
Rupasov, D., Makarenko, T. & Jacobson, A. J. Oxygen diffusion in Sr3YCo4O10.5: An electrical conductivity relaxation and thermogravimetric analysis approach. Solid State Ionics 265, 68–72 (2014).
Falkenstein, A., Mueller, D. N., De Souza, R. A. & Martin, M. Chemical relaxation experiments on mixed conducting oxides with large stoichiometry deviations. Solid State Ionics 280, 66–73 (2015).
Poetzsch, D., Merkle, R. & Maier, J. Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation. Phys. Chem. Chem. Phys. 16, 16446–16453 (2014).
Kilner, J. A., Berenov, A. & Rossiny, J. in Perovskite Oxide for Solid Oxide Fuel Cells (ed. Ishihara, T.) 95–116 (Springer, 2009).
Mauvy, F. et al. Chemical oxygen diffusion coefficient measurement by conductivity relaxation—correlation between tracer diffusion coefficient and chemical diffusion coefficient. J. Eur. Ceram. Soc. 24, 1265–1269 (2004).
Mueller, D. N., De Souza, R. A., Brendt, J., Samuelis, D. & Martin, M. Oxidation states of the transition metal cations in the highly nonstoichiometric perovskite-type oxide Ba0.1Sr0.9Co0.8Fe0.2O3−δ. J. Mater. Chem. 19, 1960–1963 (2009).
Mizusaki, J., Mima, Y., Yamauchi, S. & Fueki, K. Nonstoichiometry of the perovskite-type oxides La1–xSrxCoO3–δ. J. Solid State Chem. 80, 102–111 (1989).
Norby, T. EMF method determination of conductivity contributions from protons and other foreign ions in oxides. Solid State Ionics 28–30, 1586–1591 (1988).
Kim, E., Yeon, J. I., Martin, M. & Yoo, H.-I. Experimental demonstration of the path- and time-dependence of open-circuit voltage of galvanic cells involving a multinary compound under multiple chemical potential gradients. Solid State Ionics 235, 22–31 (2013).
Yoo, H.-I. & Martin, M. On the path-dependence of the open-cell voltage of a galvanic cell involving a ternary or multinary compound with multiple mobile ionic species under multiple chemical potential gradients. Phys. Chem. Chem. Phys. 12, 14699–14705 (2010).
Pérez-Coll, D., Heras-Juaristi, G., Fagg, D. P. & Mather, G. C. Transport-number determination of a protonic ceramic electrolyte membrane via electrode-polarisation correction with the Gorelov method. J. Power Sources 245, 445–455 (2014).
Yoon, J.-Y., In Yeon, J. & Yoo, H.-I. Concentration-cell measurement of proton transference number of SrCe0.95Yb0.05O3–δ. Solid State Ionics 213, 22–28 (2012).
De Souza, R. A., Kilner, J. A. & Jeynes, C. The application of secondary ion mass spectrometry (SIMS) to the study of high temperature proton conductors (HTPC). Solid State Ionics 97, 409–419 (1997).
den Otter, M. W., Boukamp, B. A. & Bouwmeester, H. J. M. Theory of oxygen isotope exchange. Solid State Ionics 139, 89–94 (2001).
De Souza, R. A. & Martin, M. Probing diffusion kinetics with secondary ion mass spectrometry. MRS Bull. 34, 907–914 (2009).
Wang, L., Merkle, R., Maier, J., Acartürk, T. & Starke, U. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films. Appl. Phys. Lett. 94, 071908 (2009).
Kilner, J. A., Skinner, S. J. & Brongersma, H. H. The isotope exchange depth profiling (IEDP) technique using SIMS and LEIS. J. Solid State Electrochem. 15, 861–876 (2011).
Huang, Y.-L., Pellegrinelli, C. & Wachsman, E. D. Reaction kinetics of gas-solid exchange using gas phase isotopic oxygen exchange. ACS Catal. 6, 6025–6032 (2016).
Zohourian, R., Merkle, R. & Maier, J. Bulk defect chemistry of PCFC cathode materials: discussion of defect interactions. ECS Trans. 77, 133–138 (2017).
Kreuer, K. D., Dippel, T., Baikovb, Y. M. & Maier, J. Water solubility, proton and oxygen diffusion in acceptor doped BaCeO3: a single crystal analysis. Solid State Ionics 86–88, 613–620 (1996).
Kreuer, K. D. et al. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 145, 295–306 (2001).
Løken, A., Kjølseth, C. & Haugsrud, R. Electrical conductivity and TG-DSC study of hydration of Sc-doped CaSnO3 and CaZrO3. Solid State Ionics 267, 61–67 (2014).
Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).
Kröger, F. A. & Vink, H. J. Relations between the concentrations of imperfections in crystalline solids. Solid State Phys. 3, 307–435 (1956).
Tarasova, N. A., Filinkova, Y. V. & Animitsa, I. E. Hydration and forms of oxygen-hydrogen groups in oxyfluorides Ba2–0.5xIn2O5–xFx. Russ. J. Phys. Chem. A 86, 1208–1211 (2012).
Acknowledgements
This work was supported by the Army Research Office under grant number W911NF-17-1-0051. Additional support was provided by the Advanced Research Projects Agency–Energy (ARPA-E) through the REFUEL (award DE-AR0000808) and REBELS programmes (award DEAR0000493). A.Z. was supported by the US Department of Energy (DOE), under contract no. DEAC36-08GO28308 with the Alliance for Sustainable Energy LLC, the manager and operator of the National Renewable Energy Laboratory (NREL), with funding provided by the Office of Energy Efficiency and Renewable Energy (EERE), under Hydrogen and Fuel Cell Technologies Office (HFCO), as a part of HydroGEN Energy Materials Network (EMN) consortium. The views expressed in the article do not necessarily represent the views of the DOE or the US government.
Author information
Authors and Affiliations
Contributions
M.P. prepared the manuscript. V.S. provided content related to n-type TIEC materials and assisted with revisions. A.Z. assisted with revisions. R.O. assisted with the manuscript scope and development, contributed to revisions, and provided introductory content.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Papac, M., Stevanović, V., Zakutayev, A. et al. Triple ionic–electronic conducting oxides for next-generation electrochemical devices. Nat. Mater. 20, 301–313 (2021). https://doi.org/10.1038/s41563-020-00854-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-020-00854-8
This article is cited by
-
Activating and stabilizing the surface of anode for high-performing direct-ammonia solid oxide fuel cells
Nano Research (2023)
-
Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes
Nature Catalysis (2022)
-
High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells
Nano-Micro Letters (2022)
-
Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst
Communications Chemistry (2021)