Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks


Metal–organic frameworks (MOFs) offer disruptive potential in micro- and optoelectronics because of the unique properties of these microporous materials. Nanoscale patterning is a fundamental step in the implementation of MOFs in miniaturized solid-state devices. Conventional MOF patterning methods suffer from low resolution and poorly defined pattern edges. Here, we demonstrate the resist-free, direct X-ray and electron-beam lithography of MOFs. This process avoids etching damage and contamination and leaves the porosity and crystallinity of the patterned MOFs intact. The resulting high-quality patterns have excellent sub-50-nm resolution, and approach the mesopore regime. The compatibility of X-ray and electron-beam lithography with existing micro- and nanofabrication processes will facilitate the integration of MOFs in miniaturized devices.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Direct patterning of MOF films by XRL and EBL.
Fig. 2: Halogenated ZIF films and single crystals after XRL patterning.
Fig. 3: Mechanistic investigation of the X-ray dose on ZIF-71.
Fig. 4: High-resolution EBL patterning of 100 nm thick ZIF-71 films.
Fig. 5: Porosity characterization and sensing application of patterned ZIF-71 films.

Data availability

The data represented in Figs. 2a,b, 3 and 5c,d,h are provided with the paper as Source data. The image datasets are available from figshare (


  1. 1.

    Aizenberg, J., Black, A. J. & Whitesides, G. M. Control of crystal nucleation by patterned self-assembled monolayers. Nature 398, 495–498 (1999).

    CAS  Google Scholar 

  2. 2.

    Liddle, J. A. & Gallatin, G. M. Nanomanufacturing: a perspective. ACS Nano 10, 2995–3014 (2016).

    CAS  Google Scholar 

  3. 3.

    Isaacoff, B. P. & Brown, K. A. Progress in top-down control of bottom-up assembly. Nano Lett. 17, 6508–6510 (2017).

    CAS  Google Scholar 

  4. 4.

    Smith, K. H., Tejeda-Montes, E., Poch, M. & Mata, A. Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials. Chem. Soc. Rev. 40, 4563–4577 (2011).

    CAS  Google Scholar 

  5. 5.

    Liu, C.-C. et al. Directed self-assembly of block copolymers for 7 nanometre FinFET technology and beyond. Nat. Electron. 1, 562–569 (2018).

    CAS  Google Scholar 

  6. 6.

    Batten, S. R. et al. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1715–1724 (2013).

    CAS  Google Scholar 

  7. 7.

    Bennett, T. D. & Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat. Rev. Mater. 3, 431–440 (2018).

    Google Scholar 

  8. 8.

    Usman, M., Mendiratta, S. & Lu, K.-L. Semiconductor metal–organic frameworks: future low-bandgap materials. Adv. Mater. 29, 1605071 (2017).

    Google Scholar 

  9. 9.

    Krishtab, M. et al. Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. Nat. Commun. 10, 3729 (2019).

    Google Scholar 

  10. 10.

    Ryder, M. R. et al. Dielectric properties of zeolitic imidazolate frameworks in the broad-band infrared regime. J. Phys. Chem. Lett. 9, 2678–2684 (2018).

    CAS  Google Scholar 

  11. 11.

    Lustig, W. P. et al. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017).

    CAS  Google Scholar 

  12. 12.

    Stassen, I. et al. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017).

    CAS  Google Scholar 

  13. 13.

    Falcaro, P. et al. MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560 (2014).

    CAS  Google Scholar 

  14. 14.

    Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000).

    CAS  Google Scholar 

  15. 15.

    Lu, G., Farha, O. K., Zhang, W., Huo, F. & Hupp, J. T. Engineering ZIF-8 thin films for hybrid MOF-based devices. Adv. Mater. 24, 3970–3974 (2012).

    CAS  Google Scholar 

  16. 16.

    Stassen, I. et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 15, 304–310 (2016).

    CAS  Google Scholar 

  17. 17.

    Okada, K. et al. Copper conversion into Cu(OH)2 nanotubes for positioning Cu3(BTC)2 MOF crystals: controlling the growth on flat plates, 3D architectures, and as patterns. Adv. Funct. Mater. 24, 1969–1977 (2014).

    CAS  Google Scholar 

  18. 18.

    Dalstein, O. et al. Nanoimprinted, submicrometric, MOF-based 2D photonic structures: toward easy selective vapors sensing by a smartphone camera. Adv. Funct. Mater. 26, 81–90 (2016).

    CAS  Google Scholar 

  19. 19.

    Razmjou, A. et al. Preparation of iridescent 2D photonic crystals by using a mussel-inspired spatial patterning of ZIF-8 with potential applications in optical switch and chemical sensor. ACS Appl. Mater. Interfaces 9, 38076–38080 (2017).

    CAS  Google Scholar 

  20. 20.

    Wang, Y., Fedin, I., Zhang, H. & Talapin, D. V. Direct optical lithography of functional inorganic nanomaterials. Science 357, 385–388 (2017).

    CAS  Google Scholar 

  21. 21.

    Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014).

    CAS  Google Scholar 

  22. 22.

    Nakayama, K. et al. High-mobility organic transistors with wet-etch-patterned top electrodes: a novel patterning method for fine-pitch integration of organic devices. Adv. Mater. Interfaces 1, 1300124 (2014).

    Google Scholar 

  23. 23.

    Kumar, R., Singh, N., Chang, C. K., Dong, L. & Wong, T. K. S. Deep-ultraviolet resist contamination for copper/low-k dual-damascene patterning. J. Vac. Sci. Technol. B 22, 1052 (2004).

    CAS  Google Scholar 

  24. 24.

    Baklanov, M. R. et al. Plasma processing of low-k dielectrics. J. Appl. Phys. 113, 041101 (2013).

    Google Scholar 

  25. 25.

    Maldonado, J. R. & Peckerar, M. X-ray lithography: some history, current status and future prospects. Microelectron. Eng. 161, 87–93 (2016).

    CAS  Google Scholar 

  26. 26.

    Chen, Y. Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015).

    CAS  Google Scholar 

  27. 27.

    Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    CAS  Google Scholar 

  28. 28.

    Widmer, R. N. et al. X-ray radiation-induced amorphization of metal–organic frameworks. Phys. Chem. Chem. Phys. 21, 12389–12395 (2019).

    CAS  Google Scholar 

  29. 29.

    Innocenzi, P., Malfatti, L., Marmiroli, B. & Falcaro, P. Hard X-rays and soft-matter: processing of sol–gel films from a top down route. J. Solgel Sci. Technol. 70, 236–244 (2014).

    CAS  Google Scholar 

  30. 30.

    Schweinefuß, M. E. et al. Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape. Dalton Trans. 43, 3528–3536 (2014).

    Google Scholar 

  31. 31.

    Shen, K. et al. Ordered macro–microporous metal–organic framework single crystals. Science 359, 206–210 (2018).

    CAS  Google Scholar 

  32. 32.

    Luo, Y., Ahmad, M., Schug, A. & Tsotsalas, M. Rising up: hierarchical metal–organic frameworks in experiments and simulations. Adv. Mater. 31, 1901744 (2019).

    Google Scholar 

  33. 33.

    Choi, J. O., Moore, J. A., Corelli, J. C., Silverman, J. P. & Bakhru, H. Degradation of poly(methylmethacrylate) by deep ultraviolet, x‐ray, electron beam, and proton beam irradiations. J. Vac. Sci. Technol. B 6, 2286–2289 (1988).

    CAS  Google Scholar 

  34. 34.

    Ihee, H. et al. Ultrafast X-ray diffraction of transient molecular structures in solution. Science 309, 1223–1227 (2005).

    CAS  Google Scholar 

  35. 35.

    Yuan, R. et al. Chlorine-radical-mediated photocatalytic activation of C–H bonds with visible light. Angew. Chem. Int. Ed. 52, 1035–1039 (2013).

    CAS  Google Scholar 

  36. 36.

    Lewandowski, M. & Ollis, D. F. Halide acid pretreatments of photocatalysts for oxidation of aromatic air contaminants: rate enhancement, rate inhibition, and a thermodynamic rationale. J. Catal. 217, 38–46 (2003).

    CAS  Google Scholar 

  37. 37.

    Sivaguru, P., Wang, Z., Zanoni, G. & Bi, X. Cleavage of carbon–carbon bonds by radical reactions. Chem. Soc. Rev. 48, 2615–2656 (2019).

    CAS  Google Scholar 

  38. 38.

    Cruz, A. J. et al. Integrated cleanroom process for the vapor-phase deposition of large-area zeolitic imidazolate framework thin films. Chem. Mater. 31, 9462–9471 (2019).

    CAS  Google Scholar 

  39. 39.

    Japip, S., Liao, K.-S., Xiao, Y. & Chung, T.-S. Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking. J. Membr. Sci. 497, 248–258 (2016).

    CAS  Google Scholar 

  40. 40.

    Taylor, A. W., Men, S., Clarke, C. J. & Licence, P. Acidity and basicity of halometallate-based ionic liquids from X-ray photoelectron spectroscopy. RSC Adv. 3, 9436–9445 (2013).

    CAS  Google Scholar 

  41. 41.

    Hou, J. et al. Halogenated metal–organic framework glasses and liquids. J. Am. Chem. Soc. 142, 3880–3890 (2020).

    CAS  Google Scholar 

  42. 42.

    Saitoh, R., Kanazawa, A., Kanaoka, S. & Aoshima, S. Cationic polymerization of p-methylstyrene using various metal chlorides: design rationale of initiating systems for controlled polymerization of styrenes. Polym. J. 48, 933–940 (2016).

    CAS  Google Scholar 

  43. 43.

    Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700–5734 (2014).

    CAS  Google Scholar 

  44. 44.

    Gangnaik, A. S., Georgiev, Y. M. & Holmes, J. D. New generation electron beam resists: a review. Chem. Mater. 29, 1898–1917 (2017).

    CAS  Google Scholar 

  45. 45.

    Conrad, S. et al. Controlling dissolution and transformation of zeolitic imidazolate frameworks by using electron-beam-induced amorphization. Angew. Chem. Int. Ed. 57, 13592–13597 (2018).

    CAS  Google Scholar 

  46. 46.

    Seo, E., Choi, B. K. & Kim, O. Determination of proximity effect parameters and the shape bias parameter in electron beam lithography. Microelectron. Eng. 53, 305–308 (2000).

    CAS  Google Scholar 

  47. 47.

    Nathawat, R., Kumar, A., Acharya, N. K. & Vijay, Y. K. XPS and AFM surface study of PMMA irradiated by electron beam. Surf. Coat. Technol. 203, 2600–2604 (2009).

    CAS  Google Scholar 

  48. 48.

    Li, K. et al. High speed e-beam writing for large area photonic nanostructures—a choice of parameters. Sci. Rep. 6, 32945 (2016).

    CAS  Google Scholar 

  49. 49.

    Khay, I. et al. Assessment of the energetic performances of various ZIFs with SOD or RHO topology using high pressure water intrusion–extrusion experiments. Dalton Trans. 45, 4392–4400 (2016).

    CAS  Google Scholar 

  50. 50.

    Zhang, K. et al. Alcohol and water adsorption in zeolitic imidazolate frameworks. Chem. Commun. 49, 3245–3247 (2013).

    CAS  Google Scholar 

  51. 51.

    Dalstein, O. et al. Evaporation-directed crack-patterning of metal–organic framework colloidal films and their application as photonic sensors. Angew. Chem. Int. Ed. 56, 14011–14015 (2017).

    CAS  Google Scholar 

  52. 52.

    Michalak, D. J. et al. Porosity scaling strategies for low-k films. J. Mater. Res. 30, 3363–3385 (2015).

    CAS  Google Scholar 

  53. 53.

    Pérennès, F., De Bona, F. & Pantenburg, F. J. Deep X-ray lithography beamline at Elettra. Nucl. Instrum. Meth. A 467–468, 1274–1278 (2001).

    Google Scholar 

  54. 54.

    Amenitsch, H. et al. First performance assessment of the small-angle X-ray scattering beamline at Elettra. J. Synchrotron Rad. 5, 506–508 (1998).

    CAS  Google Scholar 

  55. 55.

    Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High. Press. Res. 14, 235–248 (1996).

    Google Scholar 

  56. 56.

    Blessing, R. H. An empirical correction for absorption anisotropy. Acta Cryst. A 51, 33–38 (1995).

    Google Scholar 

  57. 57.

    Sheldrick, G. M. A short history of SHELX. Acta Cryst. A 64, 112–122 (2008).

    CAS  Google Scholar 

  58. 58.

    Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl Cryst. 36, 7–13 (2003).

    CAS  Google Scholar 

  59. 59.

    Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. C. 71, 9–18 (2015).

    CAS  Google Scholar 

  60. 60.

    Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2011).

    Google Scholar 

  61. 61.

    Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  Google Scholar 

  62. 62.

    Tu, M., Wannapaiboon, S., Khaletskaya, K. & Fischer, R. A. Engineering zeolitic imidazolate framework (ZIF) thin film devices for selective detection of volatile organic compounds. Adv. Funct. Mater. 25, 4470–4479 (2015).

    CAS  Google Scholar 

  63. 63.

    Le Ouay, B. et al. Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. J. Am. Chem. Soc. 138, 10088–10091 (2016).

    Google Scholar 

  64. 64.

    Herzinger, C. M., Johs, B., McGahan, W. A., Woollam, J. A. & Paulson, W. Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J. Appl. Phys. 83, 3323–3336 (1998).

    CAS  Google Scholar 

  65. 65.

    Eslava, S. et al. Characterization of a molecular sieve coating using ellipsometric porosimetry. Langmuir 23, 12811–12816 (2007).

    CAS  Google Scholar 

  66. 66.

    Grzybowski, B. A., Qin, D. & Whitesides, G. M. Beam redirection and frequency filtering with transparent elastomeric diffractive elements. Appl. Opt. 38, 2997–3002 (1999).

    CAS  Google Scholar 

  67. 67.

    Tanuma, S., Powell, C. J. & Penn, D. R. Calculation of electron inelastic mean free paths (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation. Surf. Interface Anal. 35, 268–275 (2003).

    CAS  Google Scholar 

Download references


M.T. acknowledges the financial support from a Marie Skłodowska‐Curie Individual Fellowship (no. 708439, VAPOMOF). R.A. acknowledges funding from the European Research Council (no. 716472, VAPORE) and the Research Foundation Flanders (FWO) for funding in the research projects G083016N and 1501618N and the infrastructure project G0H0716N. P.F. acknowledges funding from the European Research Council (no. 771834, POPCRYSTAL) and LP-03. J.T. and S.D.F. acknowledge support by FWO and KU Leuven internal funds. M.L.T. acknowledges the financial support from an FWO senior postdoctoral fellowship (12ZK720N). D.E.K. acknowledges the Marie Skłodowska-Curie Training Network (no. 765378, HYCOAT) for the financial support. This work was additionally supported (Z.W. and R.A.F.) by the DFG Priority Program 1982 COORNETs ( This research project has received funding from the EU’s H2020 framework programme for research and innovation under grant agreements 801464 FETOPEN-1-2016-2017 and 654360 NFFA-Europe (proposal IDs 399, 462, 589, 596 and 854). T. Stassin and J. Marreiros are acknowledged for the help and discussions regarding the SAXS measurements. We thank E. Hedlund and M. Roeffaers for the assistance with the installation of the diffraction grating sensor setup, B. Raes and J. van de Vondel for the help with the EBL tool and M. Krishtab for the discussion on MOFs for low-k dielectrics.

Author information




M.T. and R.A. conceived and designed the experiments. M.T. carried out and analysed film deposition, patterning and characterization experiments. M.T., B.X., D.E.K., M.J.V.H., A.T. and P.F. carried out bulk MOF synthesis and characterization. M.T., B.X., D.E.K., I.S. and B.M. carried out the XRL patterning. M.T., B.X., D.E.K. and H.A. carried out SAXS measurements. A.J.C and T.H. conducted the XPS measurements. M.T., J.T. and S.D.F contributed to the AFM measurements. M.T. and M.L.T. designed and conducted the diffraction grating sensing. Z.W. and R.A.F. conducted QCM measurements. The manuscript was written by M.T. and R.A., with the input of all authors.

Corresponding author

Correspondence to Rob Ameloot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 XRL-patterned 300 nm thick ZIF-71 films.

a, 3D optical profilometry of a ZIF-71 pattern (dumbbell shape), and the corresponding cross-section SEM images (b). c, 3D optical profilometry of a ZIF-71 patterns (square) and the corresponding top-view SEM images (d). e, 3D optical profilometry of a ZIF-71 patterns (hexagon) and the corresponding top-view SEM images (f).

Extended Data Fig. 2 XRL-patterned ZIF-8_Cl single crystals.

a, SEM image of pristine ZIF-8_dcIm single crystals. b, SEM image of ZIF-8_dcIm single crystals of which part has been cut away via XRL (red dashed box). c, SEM images of ZIF-8_dcIm single crystals after XRL patterning with a negative hexagonal grid mask. d-g, SEM images of ZIF-8_dcIm single crystals after XRL patterning with different shaped positive masks. All crystals were spread on double-sided Kapton tape on a Si wafer. Because of the weak adhesion between the crystals and the substrate, some patterned crystals were tilted or fell over (for example, the rod-shaped crystals in panel c) after development. The imprint on the substrate occurs because of the X-ray-induced damage of the Kapton tape.

Extended Data Fig. 3 EBL-patterned 100 nm thick ZIF-71 film.

SEM images of EBL-patterned ZIF-71 patterns with different sizes of trenches: a, 70 nm; b, 100 nm; c, 200 nm; d, 500 nm. SEM images of EBL-patterned ZIF-71 patterns with different sizes of square-shaped holes: e, 70 nm; f, 100 nm; g, 200 nm; h, 500 nm.

Supplementary information

Supplementary Information

Supplementary Information Sections 1–8, Figures 1–71, Tables 1–6 and references 1–37.

Source data

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tu, M., Xia, B., Kravchenko, D.E. et al. Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nat. Mater. 20, 93–99 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing