Light-induced reversal of ion segregation in mixed-halide perovskites

Abstract

Bandgap instability due to light-induced phase segregation in mixed-halide perovskites presents a major challenge for their future commercial use. Here we demonstrate that photoinduced halide-ion segregation can be completely reversed at sufficiently high illumination intensities, enabling control of the optical bandgap of a mixed-halide perovskite single crystal by optimizing the input photogenerated carrier density. We develop a polaron-based two-dimensional lattice model that rationalizes the experimentally observed phenomena by assuming that the driving force for photoinduced halide segregation is dependent on carrier-induced strain gradients that vanish at high carrier densities. Using illumination sources with different excitation intensities, we demonstrate write–read–erase experiments showing that it is possible to store information in the form of latent images over several minutes. The ability to control the local halide-ion composition with light intensity opens opportunities for the use of mixed-halide perovskites in concentrator and tandem solar cells, as well as in high-power light-emissive devices and optical memory applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Photoinduced halide-ion segregation (PHS) and mixing (PHM) within a MAPb(Br0.8I0.2)3 single-crystal microplatelet.
Fig. 2: Modelling of halide segregation and mixing in response to polaron density (steady state).
Fig. 3: Spatially resolved steady-state PL maps in response to a carrier density gradient.
Fig. 4: Imaging the stability of the mixed state (PHM) after localized illumination.

Data availability

The main data supporting the findings of this study are available within the Article and its Supplementary Information. Extra data are available from https://doi.org/10.6084/m9.figshare.12896375.v1.

Code availability

The code used to generate the simulated data of this study is available from the corresponding authors upon reasonable request.

References

  1. 1.

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    CAS  Google Scholar 

  2. 2.

    Saliba, M., Correa-Baena, J.-P., Grätzel, M., Hagfeldt, A. & Abate, A. Perovskite solar cells: from the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 57, 2554–2569 (2018).

    CAS  Google Scholar 

  3. 3.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  4. 4.

    Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    CAS  Google Scholar 

  5. 5.

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    CAS  Google Scholar 

  6. 6.

    Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    CAS  Google Scholar 

  7. 7.

    Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    CAS  Google Scholar 

  8. 8.

    Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    CAS  Google Scholar 

  9. 9.

    Eperon, G. E., Hörantner, M. T. & Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095 (2017).

    CAS  Google Scholar 

  10. 10.

    Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    CAS  Google Scholar 

  11. 11.

    Balakrishna, R. G., Kobosko, S. M. & Kamat, P. V. Mixed halide perovskite solar cells. Consequence of iodide treatment on phase segregation recovery. ACS Energy Lett. 3, 2267–2272 (2018).

    CAS  Google Scholar 

  12. 12.

    Tang, X. et al. Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 18, 2172–2178 (2018).

    CAS  Google Scholar 

  13. 13.

    Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

    CAS  Google Scholar 

  14. 14.

    Gualdrón-Reyes, A. F. et al. Controlling the phase segregation in mixed halide perovskites through nanocrystal size. ACS Energy Lett. 4, 54–62 (2019).

    Google Scholar 

  15. 15.

    Wang, X. et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nat. Commun. 10, 695 (2019).

    CAS  Google Scholar 

  16. 16.

    Kubicki, D. J. et al. Phase segregation in potassium-doped lead halide perovskites from 39-K solid-state NMR at 21.1 T. J. Am. Chem. Soc. 140, 7232–7238 (2018).

    CAS  Google Scholar 

  17. 17.

    Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    CAS  Google Scholar 

  18. 18.

    Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    CAS  Google Scholar 

  19. 19.

    Mao, W. et al. Visualizing phase segregation in mixed-halide perovskite single crystals. Angew. Chem. Int. Ed. 58, 2893–2898 (2019).

    CAS  Google Scholar 

  20. 20.

    Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005 (2018).

    CAS  Google Scholar 

  21. 21.

    Mao, W. et al. Controlled growth of monocrystalline organo-lead halide perovskite and its application in photonic devices. Angew. Chem. Int. Ed. 56, 12486–12491 (2017).

    CAS  Google Scholar 

  22. 22.

    Wang, L. et al. Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3 − yXy) single crystals and photodetector applications. AIP Adv. 6, 045115 (2016).

    Google Scholar 

  23. 23.

    Brennan, M. C., Draguta, S., Kamat, P. V. & Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3, 204–213 (2018).

    CAS  Google Scholar 

  24. 24.

    Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    CAS  Google Scholar 

  25. 25.

    Brivio, F., Caetano, C. & Walsh, A. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1 – xBrx)3 hybrid halide perovskite alloy. J. Phys. Chem. Lett. 7, 1083–1087 (2016).

    CAS  Google Scholar 

  26. 26.

    Draguta, S. et al. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites. Nat. Commun. 8, 200 (2017).

    Google Scholar 

  27. 27.

    Ma, J. & Wang, L.-W. Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3. Nano Lett. 15, 248–253 (2015).

    CAS  Google Scholar 

  28. 28.

    Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Google Scholar 

  29. 29.

    Zheng, F. & Wang, L.-W. Large polaron formation and its effect on electron transport in hybrid perovskites. Energy Environ. Sci. 12, 1219–1230 (2019).

    CAS  Google Scholar 

  30. 30.

    Ambrosio, F., Wiktor, J., De Angelis, F. & Pasquarello, A. Origin of low electron–hole recombination rate in metal halide perovskites. Energy Environ. Sci. 11, 101–105 (2018).

    CAS  Google Scholar 

  31. 31.

    Uratani, H., Chou, C.-P. & Nakai, H. Quantum mechanical molecular dynamics simulations of polaron formation in methylammonium lead iodide perovskite. Phys. Chem. Chem. Phys. 22, 97–106 (2020).

    CAS  Google Scholar 

  32. 32.

    Zhou, L. et al. Cation alloying delocalizes polarons in lead halide perovskites. J. Phys. Chem. Lett. 10, 3516–3524 (2019).

    CAS  Google Scholar 

  33. 33.

    Frost, J. M. & Walsh, A. What is moving in hybrid halide perovskite solar cells? Acc. Chem 49, 528–535 (2016).

    CAS  Google Scholar 

  34. 34.

    Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    CAS  Google Scholar 

  35. 35.

    Knight, A. J. et al. Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 4, 75–84 (2019).

    CAS  Google Scholar 

  36. 36.

    Yang, X. et al. Light induced metastable modification of optical properties in CH3NH3PbI3 − xBrx perovskite films: two-step mechanism. Org. Electron. 34, 79–83 (2016).

    CAS  Google Scholar 

  37. 37.

    Elmelund, T., Seger, B., Kuno, M. & Kamat, P. V. How interplay between photo and thermal activation dictates halide ion segregation in mixed halide perovskites. ACS Energy Lett. 5, 56–63 (2020).

    CAS  Google Scholar 

  38. 38.

    Nandi, P. et al. Temperature dependent photoinduced reversible phase separation in mixed-halide perovskite. ACS Appl. Energy Mater. 1, 3807–3814 (2018).

    CAS  Google Scholar 

  39. 39.

    Wang, Z. et al. High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nat. Energy 3, 855–861 (2018).

    CAS  Google Scholar 

  40. 40.

    Lin, Q., Wang, Z., Snaith, H. J., Johnston, M. B. & Herz, L. M. Hybrid perovskites: prospects for concentrator solar cells. Adv. Sci. 5, 1700792 (2018).

    Google Scholar 

  41. 41.

    Kawasaki, K. in Phase Transitions and Critical Phenomena Vol. 2 (eds Domb, C. & Green, M. S.) 443 (Academic Press, 1972).

  42. 42.

    Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925).

    CAS  Google Scholar 

  43. 43.

    Voter, A. F. in Radiation Effects in Solids Vol. 235 (eds Sickafus, K. E., Kotomin, E. A. & Uberuaga, B. P.) 1–23 (Springer, 2007).

  44. 44.

    Yin, W.-J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).

    CAS  Google Scholar 

  45. 45.

    Suchan, K., Merdasa, A., Rehermann, C., Unger, E. L. & Scheblykin, I. G. Complex evolution of photoluminescence during phase segregation of MAPb(I1 − xBrx)3 mixed halide perovskite. J. Lumin. 221, 117073 (2020).

    CAS  Google Scholar 

  46. 46.

    Frost, J. M., Whalley, L. D. & Walsh, A. Slow cooling of hot polarons in halide perovskite solar cells. ACS Energy Lett. 2, 2647–2652 (2017).

    CAS  Google Scholar 

  47. 47.

    Das, P., Saha-Dasgupta, T. & Puri, S. Universality of domain growth in antiferromagnets with spin-exchange kinetics. Eur. Phys. J. E 40, 94 (2017).

    Google Scholar 

  48. 48.

    Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion and radiative efficiencies. Acc. Chem. 49, 146–154 (2016).

    CAS  Google Scholar 

  49. 49.

    Mikhnenko, O. V., Blom, P. W. M. & Nguyen, T.-Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8, 1867–1888 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australian Research Council through the Centre of Excellence in Exciton Science (CE170100026) and additional grants (DP160104575, LE170100235). We acknowledge financial support from the Australian Government through the Australian Renewable Energy Agency and the Australian Centre for Advanced Photovoltaics (ACAP). W.M. acknowledges an ACAP fellowship supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). We acknowledge XPS measurements by T. Gengenbach from The Commonwealth Scientific and Industrial Research Organisation (CSIRO). We also acknowledge the use of facilities within the Monash Centre for Electron Microscopy (MCEM), Monash X-Ray Platform and Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia.

Author information

Affiliations

Authors

Contributions

U.B., T.A.S. and A.W.-C. conceived the idea and supervised the research. W.M. fabricated and characterized the perovskite microplatelets. C.R.H. and W.M. performed the experiments. S.B. developed and ran the simulations. W.M., C.R.H., S.B., T.A.S., U.B. and A.W.-C. interpreted the data. All authors contributed to writing and reviewing the manuscript.

Corresponding authors

Correspondence to Asaph Widmer-Cooper or Trevor A. Smith or Udo Bach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, carrier density calculations and discussion.

Supplementary Video 1

Video 1_steady-state Steady-state widefield PL images (540 nm to 730 nm).

Supplementary Video 2

Video 2_Video-recording of widefield PL in the 540-nm to 570-nm spectral region.

Supplementary Video 3

Video 3_Video-recording of widefield PL in the 630-nm to 660-nm spectral region.

Supplementary Video 4

Video 4_Video-recording of phase-segregated domains forming after 532-nm laser switched off.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mao, W., Hall, C.R., Bernardi, S. et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-00826-y

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing