Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets

Abstract

The synthesis of molecular-sieving zeolitic membranes by the assembly of building blocks, avoiding the hydrothermal treatment, is highly desired to improve reproducibility and scalability. Here we report exfoliation of the sodalite precursor RUB-15 into crystalline 0.8-nm-thick nanosheets, that host hydrogen-sieving six-membered rings (6-MRs) of SiO4 tetrahedra. Thin films, fabricated by the filtration of a suspension of exfoliated nanosheets, possess two transport pathways: 6-MR apertures and intersheet gaps. The latter were found to dominate the gas transport and yielded a molecular cutoff of 3.6 Å with a H2/N2 selectivity above 20. The gaps were successfully removed by the condensation of the terminal silanol groups of RUB-15 to yield H2/CO2 selectivities up to 100. The high selectivity was exclusively from the transport across 6-MR, which was confirmed by a good agreement between the experimentally determined apparent activation energy of H2 and that computed by ab initio calculations. The scalable fabrication and the attractive sieving performance at 250–300 °C make these membranes promising for precombustion carbon capture.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: RUB-15 framework as an attractive candidate for the fabrication of hydrogen-sieving membranes.
Fig. 2: Characterization of exfoliated RUB-15.
Fig. 3: Characterization of the as-filtered RUB-15 nanosheet film.
Fig. 4: Characterization of the calcined RUB-15 nanosheet film.

Data availability

All data and detailed protocols that support the findings of this study are available from the authors on reasonable request.

References

  1. 1.

    Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes—a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015).

    CAS  Google Scholar 

  2. 2.

    Yu, M., Noble, R. D. & Falconer, J. L. Zeolite membranes: microstructure characterization and permeation mechanisms. Acc. Chem. Res. 44, 1196–1206 (2011).

    CAS  Google Scholar 

  3. 3.

    Pham, T. C. T., Kim, H. S. & Yoon, K. B. Growth of uniformly oriented silica MFI and BEA zeolite films on substrates. Science 334, 1533–1538 (2011).

    CAS  Google Scholar 

  4. 4.

    Caro, J. & Noack, M. Zeolite membranes—recent developments and progress. Microporous Mesoporous Mater. 115, 215–233 (2008).

    CAS  Google Scholar 

  5. 5.

    Hedlund, J. et al. High-flux MFI membranes. Microporous Mesoporous Mater. 52, 179–189 (2002).

    CAS  Google Scholar 

  6. 6.

    Ishikawa, A., Chiang, T. H. & Toda, F. Separation of water–alcohol mixtures by permeation through a zeolite membrane on porous glass. J. Chem. Soc. Chem. Commun. 1989, 764–765 (1989).

    Google Scholar 

  7. 7.

    Jia, M. D., Chen, B., Noble, R. D. & Falconer, J. L. Ceramic–zeolite composite membranes and their application for separation of vapor/gas mixtures. J. Membr. Sci. 90, 1–10 (1994).

    CAS  Google Scholar 

  8. 8.

    Gascon, J. et al. Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chem. Mater. 24, 2829–2844 (2012).

    CAS  Google Scholar 

  9. 9.

    Varoon, K. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334, 72–75 (2011).

    CAS  Google Scholar 

  10. 10.

    Tosheva, L. & Valtchev, V. P. Nanozeolites: synthesis, crystallization mechanism, and applications. Chem. Mater. 17, 2494–2513 (2005).

    CAS  Google Scholar 

  11. 11.

    Zhang, H. et al. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports. Angew. Chem. Int. Ed. 55, 7184–7187 (2016).

    CAS  Google Scholar 

  12. 12.

    Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M. & Buglass, J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353–356 (1998).

    CAS  Google Scholar 

  13. 13.

    Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249 (2009).

    CAS  Google Scholar 

  14. 14.

    Rangnekar, N. et al. 2D zeolite coatings: Langmuir–Schaefer deposition of 3 nm thick MFI zeolite nanosheets. Angew. Chem. Int. Ed. 54, 6571–6575 (2015).

    CAS  Google Scholar 

  15. 15.

    Ogino, I. et al. Delamination of layered zeolite precursors under mild conditions: synthesis of UCB-1 via fluoride/chloride anion-promoted exfoliation. J. Am. Chem. Soc. 133, 3288–3291 (2011).

    CAS  Google Scholar 

  16. 16.

    Zanardi, S. et al. Crystal structure determination of zeolite Nu-6(2) and its layered precursor Nu-6(1). Angew. Chem. Int. Ed. 43, 4933–4937 (2004).

    CAS  Google Scholar 

  17. 17.

    Roth, W. J. et al. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 5, 628–633 (2013).

    CAS  Google Scholar 

  18. 18.

    Cussler, E. L. Membranes containing selective flakes. J. Membr. Sci. 52, 275–288 (1990).

    CAS  Google Scholar 

  19. 19.

    Agrawal, K. V. et al. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers. Adv. Mater. 27, 3243–3249 (2015).

    CAS  Google Scholar 

  20. 20.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Google Scholar 

  21. 21.

    Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  Google Scholar 

  22. 22.

    Mazur, M. et al. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 8, 58–62 (2016).

    CAS  Google Scholar 

  23. 23.

    Zhang, X. Y. et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 336, 1684–1687 (2012).

    CAS  Google Scholar 

  24. 24.

    Yuan, Z. et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications. Angew. Chem. 128, 3110–3114 (2016).

    Google Scholar 

  25. 25.

    Chen, Z. et al. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem. Mater. 18, 5669–5675 (2006).

    CAS  Google Scholar 

  26. 26.

    Sabnis, S. et al. Exfoliation of two-dimensional zeolites in liquid polybutadienes. Chem. Commun. 53, 7011–7014 (2017).

    CAS  Google Scholar 

  27. 27.

    Corma, A., Diaz, U., Domine, M. E. & Fornes, V. AlITQ-6 and TiITQ-6: synthesis, characterization, and catalytic activity. Angew. Chem. Int. Ed. 39, 1499–1501 (2000).

    CAS  Google Scholar 

  28. 28.

    Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    CAS  Google Scholar 

  29. 29.

    Ding, L. et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018).

    Google Scholar 

  30. 30.

    Ding, L. et al. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56, 1825–1829 (2017).

    CAS  Google Scholar 

  31. 31.

    Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).

    CAS  Google Scholar 

  32. 32.

    Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS  Google Scholar 

  33. 33.

    Oberhagemann, U., Bayat, P., Marler, B., Gies, H. & Rius, J. A layer silicate: synthesis and structure of the zeolite precursor RUB-15—[N(CH3)4]8[Si24O52(OH)4]·20 H2O. Angew. Chem. Int. Ed. 35, 2869–2872 (1996).

    CAS  Google Scholar 

  34. 34.

    Merkel, T. C., Zhou, M. & Baker, R. W. Carbon dioxide capture with membranes at an IGCC power plant. J. Membr. Sci. 389, 441–450 (2012).

    CAS  Google Scholar 

  35. 35.

    Wang, H., Dong, X. & Lin, Y. S. Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation. J. Membr. Sci. 450, 425–432 (2014).

    CAS  Google Scholar 

  36. 36.

    Gu, X., Tang, Z. & Dong, J. On-stream modification of MFI zeolite membranes for enhancing hydrogen separation at high temperature. Microporous Mesoporous Mater. 111, 441–448 (2008).

    CAS  Google Scholar 

  37. 37.

    Hong, M., Li, S., Falconer, J. L. & Noble, R. D. Hydrogen purification using a SAPO-34 membrane. J. Membr. Sci. 307, 277–283 (2008).

    CAS  Google Scholar 

  38. 38.

    Hong, Z. et al. Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane. Int. J. Hydrogen Energy 38, 8409–8414 (2013).

    CAS  Google Scholar 

  39. 39.

    Moteki, T., Chaikittisilp, W., Sakamoto, Y., Shimojima, A. & Okubo, T. Role of acidic pretreatment of layered silicate RUB-15 in its topotactic conversion into pure silica sodalite. Chem. Mater. 23, 3564–3570 (2011).

    CAS  Google Scholar 

  40. 40.

    Moteki, T., Chaikittisilp, W., Shimojima, A. & Okubo, T. Silica sodalite without occluded organic matters by topotactic conversion of lamellar precursor. J. Am. Chem. Soc. 130, 15780–15781 (2008).

    CAS  Google Scholar 

  41. 41.

    Kopelevich, D. I. & Chang, H. C. Diffusion of inert gases in silica sodalite: importance of lattice flexibility. J. Chem. Phys. 115, 9519–9527 (2001).

    CAS  Google Scholar 

  42. 42.

    van den Berg, A. W. C. et al. Molecular-dynamics analysis of the diffusion of molecular hydrogen in all-silica sodalite. J. Chem. Phys. 120, 10285–10289 (2004).

    Google Scholar 

  43. 43.

    Wang, N., Liu, Y., Huang, A. & Caro, J. Supported SOD membrane with steam selectivity by a two-step repeated hydrothermal synthesis. Microporous Mesoporous Mater. 192, 8–13 (2014).

    CAS  Google Scholar 

  44. 44.

    Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  45. 45.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  46. 46.

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  Google Scholar 

  47. 47.

    Henkelman, G., Uberuaga, B. P. & Jónsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Google Scholar 

  48. 48.

    Maheshwari, S. et al. Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor. J. Am. Chem. Soc. 130, 1507–1516 (2008).

    CAS  Google Scholar 

  49. 49.

    Agrawal, K. V. et al. Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE J. 59, 3458–3467 (2013).

    CAS  Google Scholar 

  50. 50.

    Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 679, eaao0865 (2018).

    Google Scholar 

  51. 51.

    Zhu, Y. et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017).

    CAS  Google Scholar 

  52. 52.

    Aguiar, H., Serra, J., González, P. & León, B. Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J. Non. Cryst. Solids 355, 475–480 (2009).

    CAS  Google Scholar 

  53. 53.

    Karimi, S. et al. A simple method for blocking defects in zeolite membranes. J. Membr. Sci. 489, 270–274 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank our host institution, EPFL, for generous support. This work was primarily funded by the Swiss Competence Center for Energy Research: Efficiency of Industrial Processes (SCCER-EIP). A part of this work was funded by the Swiss National Science Foundation (Assistant Professor Energy Grant, grant no. PYAPP2-173645). The computational aspects of this work were supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s887. We acknowledge E. Oveisi for the helpful discussions on electron microscopy.

Author information

Affiliations

Authors

Contributions

M.D. and K.V.A. conceived the project. M.D. performed the synthesis and characterization of RUB-15 nanosheets and the membranes. L.F.V. and M.D. developed the experimental techniques for the nanosheet assembly and analysed the results. R.S. and M.C. performed the ab initio simulations. L.L., Y.H., L.F.V., M.D. and K.V.A. performed the HRTEM and analysed the data. M.R. performed the AFM measurements. M.D., P.S., P.B. and V.W. performed the out-of-plane and in-plane XRD analysis. M.D. and C.E.A. performed the solid-state NMR measurements. M.D., L.F.V. and K.V.A. wrote the manuscript and prepared the figures with help from the other co-authors. All the authors contributed to the scientific discussions and to the preparation of the manuscript.

Corresponding author

Correspondence to Kumar Varoon Agrawal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials, characterisations, Supplementary Figs. 1–23, Notes 1–5, Tables 1–5 and References 1–10.

Supplementary Video

Supplementary Video.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dakhchoune, M., Villalobos, L.F., Semino, R. et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-00822-2

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing