Opportunities and challenges in the development of advanced materials for emission control catalysts


Advances in engine technologies are placing additional demands on emission control catalysts, which must now perform at lower temperatures, but at the same time be robust enough to survive harsh conditions encountered in engine exhaust. In this Review, we explore some of the materials concepts that could revolutionize the technology of emission control systems. These include single-atom catalysts, two-dimensional materials, three-dimensional architectures, core@shell nanoparticles derived via atomic layer deposition and via colloidal synthesis methods, and microporous oxides. While these materials provide enhanced performance, they will need to overcome many challenges before they can be deployed for treating exhaust from cars and trucks. We assess the state of the art for catalysing reactions related to emission control and also consider radical breakthroughs that could potentially completely transform this field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Typical configurations of a modern gasoline and diesel emission catalysts.
Fig. 2: Encapsulation of the active phase via colloidal synthesis.
Fig. 3: ALD for overcoating and surface modification.
Fig. 4: Composite materials aggregated into a secondary structure.
Fig. 5: 2D and 3D nanostructures for emission control catalysts.
Fig. 6: Deactivation by formation of single atoms and their in situ reactivation.
Fig. 7: Strategies to achieve high reactivity in single-atom catalysts.


  1. 1.

    Farrauto, R. J., Deeba, M. & Alerasool, S. Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal. 2, 603–613 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    Catalysis in motion. Nat. Catal. 2, 553–553 (2019).

  3. 3.

    Johnson, T. & Joshi, A. Review of vehicle engine efficiency and emissions. SAE Int. J. Engines 11, 1307–1330 (2018).

    Article  Google Scholar 

  4. 4.

    Bielaczyc, P. & Woodburn, J. Trends in automotive emission legislation: impact on LD engine development, fuels, lubricants and test methods: a global view, with a focus on WLTP and RDE regulations. Emission Control Sci. Technol. 5, 86–98 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Deutschmann, O. & Grunwaldt, J. D. Exhaust gas aftertreatment in mobile systems: status, challenges, and perspectives. Chem. Ing. Tech. 85, 595–617 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Twigg, M. V. Catalytic control of emissions from cars. Catal. Today 163, 33–41 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Twigg, M. V. & Phillips, P. R. Cleaning the air we breathe - controlling diesel particulate emissions from passenger cars. Platinum Metals Rev. 53, 27–34 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Zhang, R. D., Liu, N., Lei, Z. G. & Chen, B. H. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts. Chem. Rev. 116, 3658–3721 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Wang, A. & Olsson, L. The impact of automotive catalysis on the United Nations sustainable development goals. Nat. Catal. 2, 566–570 (2019).

    Article  Google Scholar 

  10. 10.

    Granger, P. & Parvulescu, V. I. Catalytic NOx abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem. Rev. 111, 3155–3207 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Lee, J., Theis, J. R. & Kyriakidou, E. A. Vehicle emissions trapping materials: successes, challenges, and the path forward. Appl. Catal. B 243, 397–414 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Raj, A. Methane emission control: a review of mobile and stationary source emissions abatement technologies for natural gas engines. Johnson Matthey Technol. Rev. 60, 228–235 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Beale, A. M. et al. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 44, 7371–7405 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Rappé, K. G. et al. Aftertreatment protocols for catalyst characterization and performance evaluation: low-temperature oxidation, storage, three-way, and NH3-SCR catalyst test protocols. Emission Control Sci. Technol. 5, 183–214 (2019).

    Article  CAS  Google Scholar 

  15. 15.

    De Rogatis, L. et al. Embedded phases: a way to active and stable catalysts. ChemSusChem 3, 24–42 (2010).

    Article  CAS  Google Scholar 

  16. 16.

    Li, G. & Tang, Z. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective. Nanoscale 6, 3995–4011 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Dai, Y. et al. A Sinter-resistant catalytic system based on platinum nanoparticles supported on TiO2 nanofibers and covered by porous silica. Angew. Chem. Int. Ed. 49, 8165–8168 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Peng, H. G. et al. Confined ultrathin Pd-Ce nanowires with outstanding moisture and SO2 tolerance in methane combustion. Angew. Chem. Int. Ed. 57, 8953–8957 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Arnal, P. M., Comotti, M. & Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 45, 8224–8227 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    Cargnello, M., Gorte, R. J. & Fornasiero, P. in Catalysis by Ceria and Related Materials 2nd edn (eds Trovarelli, A. & Fornasiero, P.) 361–396 (Imperial College Press, 2013).

  21. 21.

    Cargnello, M. et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 337, 713–717 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Adijanto, L. et al. Exceptional thermal stability of Pd@CeO2 core–shell catalyst nanostructures grafted onto an oxide surface. Nano Lett. 13, 2252–2257 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Li, L. et al. Hydrothermal stability of core–shell Pd@Ce0.5Zr0.5O2/Al2O3 catalyst for automobile three-way reaction. ACS Catal. 8, 3222–3231 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Seo, C. et al. Facile, one-pot synthesis of Pd@CeO2 core@shell nanoparticles in aqueous environment by controlled hydrolysis of metalloorganic cerium precursor. Mater. Lett. 206, 105–108 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Seo, C. Y. et al. Palladium redispersion at high temperature within the Pd@SiO2 core@shell structure. Catal. Commun. 108, 73–76 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Lu, J. L. et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335, 1205–1208 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Onn, T. M. et al. Modification of Pd/CeO2 catalyst by atomic layer deposition of ZrO2. Appl. Catal. B 197, 280–285 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Duan, H. et al. Pentacoordinated Al3+-stabilized active Pd structures on Al2O3-coated palladium catalysts for methane combustion. Angew. Chem. Int. Ed. 58, 12043–12048 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Mao, X. Y., Foucher, A., Stach, E. A. & Gorte, R. J. A study of support effects for CH4 and CO oxidation over Pd catalysts on ALD-modified Al2O3. Catal. Lett. 149, 905–915 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Getsoian, A. et al. Remarkable improvement in low temperature performance of model three-way catalysts through solution atomic layer deposition. Nat. Catal. 2, 614–622 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Morikawa, A. et al. A new concept in high performance ceria–zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier. Appl. Catal. B 78, 210–221 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Chen, B. H.-Y. & Chang, H.-L. Development of low temperature three-way catalysts for future fuel efficient vehicles. Johnson Matthey Technol. Rev. 59, 64–67 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Toops, T. J., Parks, J., Choi, J.-S., Binder, A. & Kyriakidou, E. Low-Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization (US Department of Energy, 2017).

  34. 34.

    Nishihata, Y. et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 418, 164–167 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    Tanaka, H. et al. Design of the intelligent catalyst for Japan ULEV standard. Topics Catal. 30–31, 389–396 (2004).

    Article  Google Scholar 

  36. 36.

    Katz, M. B. et al. Self-regeneration of Pd-LaFeO3 catalysts: new insight from atomic-resolution electron microscopy. J. Am. Chem. Soc. 133, 18090–18093 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Onn, T. M. et al. Smart Pd catalyst with improved thermal stability supported on high-surface-area LaFeO3 prepared by atomic layer deposition. J. Am. Chem. Soc. 140, 4841–4848 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Neagu, D. et al. Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles. Nat. Commun. 8, 1855 (2017).

    Article  CAS  Google Scholar 

  39. 39.

    Song, Y. J. et al. Evolution of dendritic platinum nanosheets into ripening-resistant holey sheets. Nano Lett. 9, 1534–1539 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Cai, Y., Xu, J., Guo, Y. & Liu, J. Ultrathin, polycrystalline, two-dimensional Co3O4 for low-temperature CO oxidation. ACS Catal. 9, 2558–2567 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Yang, X. W. et al. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat. Commun. 10, 1611 (2019).

    Article  CAS  Google Scholar 

  42. 42.

    Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    CAS  Article  Google Scholar 

  43. 43.

    Xie, P. F. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).

    Article  CAS  Google Scholar 

  44. 44.

    Loffler, T. et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).

    Article  CAS  Google Scholar 

  45. 45.

    Chen, H. et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. J. Mater. Chem. A 6, 11129–11133 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Qiao, B. T. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    Beniya, A. & Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590–602 (2019).

    Article  CAS  Google Scholar 

  48. 48.

    Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Kropp, T. et al. Anionic single-atom catalysts for CO oxidation: support-independent activity at low temperatures. ACS Catal. 9, 1595–1604 (2019).

    CAS  Article  Google Scholar 

  50. 50.

    Lu, Y. B. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2, 149–156 (2019).

    CAS  Article  Google Scholar 

  51. 51.

    Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748–755 (2019).

    CAS  Article  Google Scholar 

  52. 52.

    Ganzler, A. M. et al. Tuning the structure of platinum particles on ceria insitu for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem. Int. Ed. 56, 13078–13082 (2017).

    Article  CAS  Google Scholar 

  53. 53.

    Datye, A. K. Dispersing nanoparticles into single atoms. Nat. Nanotechnol. 14, 817–818 (2019).

    CAS  Article  Google Scholar 

  54. 54.

    Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).

    CAS  Article  Google Scholar 

  55. 55.

    Yao, Y. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019).

    CAS  Article  Google Scholar 

  56. 56.

    Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Kunwar, D. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 9, 3978–3990 (2019).

    CAS  Article  Google Scholar 

  58. 58.

    Datye, A. & Wang, Y. Atom trapping: a novel approach to generate thermally stable and regenerable single-atom catalysts. Natl Sci. Rev. 5, 630–632 (2018).

    CAS  Article  Google Scholar 

  59. 59.

    Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    CAS  Article  Google Scholar 

  60. 60.

    Pereira-Hernández, X. I. et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 10, 1358 (2019).

    Article  CAS  Google Scholar 

  61. 61.

    Betz, B. Low Temperature CO Oxidation on Pt/CeO2 Containing Catalysts. PhD thesis, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Technical University of Darmstadt (2019).

  62. 62.

    Kim, C. H., Lee, H., Kang, C. Y. & Chung, J. W. For a new paradigm in aftertreatment: the almost zero concept for gasoline NOx and hydrocarbon emissions. In 27th Aachen Colloquium Automobile and Engine Technology (Aachener Kolloquium, 2018).

  63. 63.

    Bruix, A. et al. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).

    CAS  Article  Google Scholar 

  64. 64.

    Betz, B., Muller, E., Hoyer, R. & Votsmeier, M. Low temperature CO/hydrocarbon oxidation in automobile exhaust using short pulse reductive activation of Pt/ceria. In 3rd Fundamentals and Applications of Cerium Dioxide in Catalysis (FACD, 2018).

  65. 65.

    Wei, S. J. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    CAS  Article  Google Scholar 

  66. 66.

    Wang, H. et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 10, 3808 (2019).

    Article  CAS  Google Scholar 

  67. 67.

    Jeong, H. et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 3, 368–375 (2020).

    CAS  Article  Google Scholar 

  68. 68.

    Leistner, K. & Olsson, L. Deactivation of Cu/SAPO-34 during low-temperature NH3-SCR. Appl. Catal. B 165, 192–199 (2015).

    CAS  Article  Google Scholar 

  69. 69.

    Wang, A. et al. Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts. Nat. Commun. 10, 1137 (2019).

    Article  CAS  Google Scholar 

  70. 70.

    Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017).

    CAS  Article  Google Scholar 

  71. 71.

    Paolucci, C. et al. Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J. Am. Chem. Soc. 138, 6028–6048 (2016).

    CAS  Article  Google Scholar 

  72. 72.

    Gramigni, F., Selleri, T., Nova, I. & Tronconi, E. Catalyst systems for selective catalytic reduction + NOx trapping: from fundamental understanding of the standard SCR reaction to practical applications for lean exhaust after-treatment. React. Chem. Eng. 4, 1165–1178 (2019).

    CAS  Article  Google Scholar 

  73. 73.

    Jo, D. et al. Synthesis of high-silica LTA and UFI zeolites and NH3–SCR performance of their copper-exchanged form. ACS Catal. 6, 2443–2447 (2016).

    CAS  Article  Google Scholar 

  74. 74.

    Dusselier, M. & Davis, M. E. Small-pore zeolites: synthesis and catalysis. Chem. Rev. 118, 5265–5329 (2018).

    CAS  Article  Google Scholar 

  75. 75.

    Ji, Y., Bai, S. & Crocker, M. Al2O3-based passive NOx adsorbers for low temperature applications. Appl. Catal. B 170–171, 283–292 (2015).

    Article  CAS  Google Scholar 

  76. 76.

    Theis, J. R. An assessment of Pt and Pd model catalysts for low temperature NOx adsorption. Catal. Today 267, 93–109 (2016).

    CAS  Article  Google Scholar 

  77. 77.

    Chen, H.-Y. et al. Low temperature NO storage of zeolite supported Pd for low temperature diesel engine emission control. Catal. Lett. 146, 1706–1711 (2016).

    CAS  Article  Google Scholar 

  78. 78.

    Zheng, Y. et al. Low-temperature Pd/zeolite passive NOx adsorbers: structure, performance, and adsorption chemistry. J. Phys. Chem. C 121, 15793–15803 (2017).

    CAS  Article  Google Scholar 

  79. 79.

    Vu, A., Luo, J., Li, J. & Epling, W. S. Effects of CO on Pd/BEA passive NOx adsorbers. Catal. Lett. 147, 745–750 (2017).

    CAS  Article  Google Scholar 

  80. 80.

    Gu, Y., Zelinsky, R. P., Chen, Y. R. & Epling, W. S. Investigation of an irreversible NOx storage degradation mode on a Pd/BEA passive NOx adsorber. Appl. Catal. B 258, 118032 (2019).

    CAS  Article  Google Scholar 

  81. 81.

    Ballinger, T. H. & Manning, W. A., Lafyatis, D. S. Hydrocarbon Trap Technology for the Reduction of Cold-Start Hydrocarbon Emissions 970741 (SAE International, 1997).

  82. 82.

    Malamis, S. A., Harold, M. P. & Epling, W. S. Coupled NO and C3H6 trapping, release and conversion on Pd/BEA: evaluation of the lean hydrocarbon NOx trap. Ind. Eng. Chem. Res. 58, 22912–22923 (2019).

    CAS  Article  Google Scholar 

  83. 83.

    Haneda, M. & Hamada, H. Recent progress in catalytic NO decomposition. Comptes Rendus Chim. 19, 1254–1265 (2016).

    CAS  Article  Google Scholar 

  84. 84.

    Sun, Q. et al. A review on the catalytic decomposition of NO to N2 and O2: catalysts and processes. Catal. Sci. Technol. 8, 4563–4575 (2018).

    CAS  Article  Google Scholar 

  85. 85.

    Falsig, H. et al. Trends in catalytic NO decomposition over transition metal surfaces. Topics Catal. 45, 117–120 (2007).

    CAS  Article  Google Scholar 

  86. 86.

    Xu, W. et al. Development of MgCo2O4–BaCO3 composites as microwave catalysts for the highly effective direct decomposition of NO under excess O2 at a low temperature. Catal. Sci. Technol. 9, 4276–4285 (2019).

    CAS  Article  Google Scholar 

  87. 87.

    Monai, M., Montini, T., Gorte, R. J. & Fornasiero, P. Catalytic oxidation of methane: Pd and beyond. Eur. J. Inorg. Chem. 2018, 2884–2893 (2018).

    CAS  Article  Google Scholar 

  88. 88.

    Petrov, A. W. et al. Stable complete methane oxidation over palladium based zeolite catalysts. Nat. Commun. 9, 2545 (2018).

    Article  CAS  Google Scholar 

  89. 89.

    Danielis, M. et al. Outstanding methane oxidation performance of palladium-embedded ceria catalysts prepared by a one-step dry ball-milling method. Angew. Chem. Int. Ed. 57, 10212–10216 (2018).

    CAS  Article  Google Scholar 

  90. 90.

    Zhang, S. Y. et al. Dynamic structural evolution of supported palladium-ceria core-shell catalysts revealed by in situ electron microscopy. Nat. Commun. 6, 7778 (2015).

    Article  Google Scholar 

  91. 91.

    Riley, C. et al. Environmentally benign synthesis of a PGM-free catalyst for low temperature CO oxidation. Appl. Catal. B 264, 118547 (2020).

    Article  CAS  Google Scholar 

  92. 92.

    Glisenti, A. et al. Largely Cu-doped LaCo1−xCuxO3 perovskites for TWC: toward new PGM-free catalysts. Appl. Catal. B 180, 94–105 (2016).

    CAS  Article  Google Scholar 

  93. 93.

    Keav, S., Matam, S. K., Ferri, D. & Weidenkaff, A. Structured perovskite-based catalysts and their application as three-way catalytic converters—a review. Catalysts 4, 226–255 (2014).

    Article  CAS  Google Scholar 

  94. 94.

    Kang, S. B. et al. Coupled methane and NOx conversion on Pt+Pd/Al2O3 monolith: conversion enhancement through feed modulation and Mn0.5Fe2.5O4 spinel addition. Catal. Today https://doi.org/10.1016/j.cattod.2020.02.039 (2020).

  95. 95.

    Kim, C. H., Qi, G. S., Dahlberg, K. & Li, W. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327, 1624–1627 (2010).

    CAS  Article  Google Scholar 

  96. 96.

    Binder, A. J. et al. Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition. Angew. Chem. Int. Ed. 54, 13263–13267 (2015).

    CAS  Article  Google Scholar 

  97. 97.

    Yezerets, A. Understanding and modeling of aging is the key challenge for commercial vehicles. In Crosscut Lean Exhaust Emissions Reduction Simulations Workshop (CLEERS, 2019).

  98. 98.

    Lin, J., Wang, X. D. & Zhang, T. Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures. Chinese J. Catal. 37, 1805–1813 (2016).

    CAS  Article  Google Scholar 

  99. 99.

    Stonkus, O. A. et al. Thermally induced structural evolution of palladium-ceria catalysts. implication for co oxidation. ChemCatChem 11, 3505–3521 (2019).

    CAS  Article  Google Scholar 

  100. 100.

    Slavinskaya, E. M. et al. Metal–support interaction in Pd/CeO2 model catalysts for CO oxidation: from pulsed laser-ablated nanoparticles to highly active state of the catalyst. Catal. Sci. Technol. 6, 6650–6666 (2016).

    CAS  Article  Google Scholar 

  101. 101.

    Meng, L. et al. Synergetic effects of PdO species on CO oxidation over PdO–CeO2 catalysts. J. Phys. Chem. C 115, 19789–19796 (2011).

    CAS  Article  Google Scholar 

  102. 102.

    Hill, A. J. et al. Thermally induced restructuring of Pd@CeO2 and Pd@SiO2 nanoparticles as a strategy for enhancing low-temperature catalytic activity. ACS Catal. 10, 1731–1741 (2020).

    CAS  Article  Google Scholar 

Download references


The work at the University of New Mexico has been supported by NSF GOALI grant CBET-1707127 (catalyst ageing), the US Department of Energy (DOE), Office of Basic Energy Sciences (SC), Division of Chemical Sciences (grant DE-FG02-05ER15712) (catalyst synthesis) and the Air Force Office of Scientific Research (FA9550-18-1-0413) (computational modelling). The work at TU Darmstadt and Umicore has been supported by the German Federal Ministry for Economic Affairs and Energy (BMWi: 19U15014B) through the DEUFRAKO programme. We thank B. Betz for providing Fig. 7a, and we thank the following for helpful discussions: S. Oh, G. Qi and W. Li from GM Global R&D, C. H. Kim from Hyundai, C. Lambert from Ford, A. Yezerets from Cummins, K. Rappé from Pacific Northwest National Laboratory, T. Toops from Oak Ridge National Laboratory and N. Semagina from the University of Alberta.

Author information




Both authors contributed equally to this manuscript.

Corresponding authors

Correspondence to Abhaya K. Datye or Martin Votsmeier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Datye, A.K., Votsmeier, M. Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-00805-3

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing