Abstract
Nuclear spins in the solid state are both a cause of decoherence and a valuable resource for spin qubits. In this work, we demonstrate control of isolated 29Si nuclear spins in silicon carbide (SiC) to create an entangled state between an optically active divacancy spin and a strongly coupled nuclear register. We then show how isotopic engineering of SiC unlocks control of single weakly coupled nuclear spins and present an ab initio method to predict the optimal isotopic fraction that maximizes the number of usable nuclear memories. We bolster these results by reporting high-fidelity electron spin control (F = 99.984(1)%), alongside extended coherence times (Hahn-echo T2 = 2.3 ms, dynamical decoupling T2DD > 14.5 ms), and a >40-fold increase in Ramsey spin dephasing time (T2*) from isotopic purification. Overall, this work underlines the importance of controlling the nuclear environment in solid-state systems and links single photon emitters with nuclear registers in an industrially scalable material.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The source data of the figures in this manuscript can be accessed from the Zenodo repository62.
Code availability
The codes associated with this manuscript are available from the corresponding author upon request.
References
Hartman, J. S. et al. NMR studies of nitrogen doping in the 4H polytype of silicon carbide: site assignments and spin-lattice relaxation. J. Phys. Chem. C. 113, 15024–15036 (2009).
Niedbalski, P. et al. Magnetic-field-dependent lifetimes of hyperpolarized 13C spins at cryogenic temperature. J. Phys. Chem. B 122, 1898–1904 (2018).
Terblanche, C. J., Reynhardt, E. C. & Van Wyk, J. A. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects. Solid State Nucl. Magn. Reson. 20, 1–22 (2001).
Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 31045 (2019).
Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).
Zaiser, S. et al. Enhancing quantum sensing sensitivity by a quantum memory. Nat. Commun. 7, 1–11 (2016).
Taminiau, T. H., Cramer, J., Van Der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9, 171–176 (2014).
Reiserer, A. et al. Robust quantum-network memory using decoherence-protected subspaces of nuclear spins. Phys. Rev. X 6, 021040 (2016).
Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).
Cujia, K. S., Boss, J. M., Herb, K., Zopes, J. & Degen, C. L. Tracking the precession of single nuclear spins by weak measurements. Nature 571, 230–233 (2019).
Unden, T. K., Louzon, D., Zwolak, M., Zurek, W. H. & Jelezko, F. Revealing the emergence of classicality using nitrogen-vacancy centers. Phys. Rev. Lett. 123, 140402 (2019).
Klimov, P. V., Falk, A. L., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble. Sci. Adv. 1, e1501015 (2015).
Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).
Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).
Diler, B. et al. Coherent control and high-fidelity readout of chromium ions in commercial silicon carbide. npj Quantum Inf. 6, 11 (2020).
Wolfowicz, G. et al. Vanadium spin qubits as telecom quantum emitters in silicon carbide. Sci. Adv. 6, eaaz1192 (2020).
Son, N. T. et al. Developing silicon carbide for quantum spintronics. Appl. Phys. Lett. 116, 190501 (2020).
Anderson, C. P. et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1225–1230 (2019).
Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).
Crook, A. L. et al. Purcell enhancement of a single silicon carbide color center with coherent spin control. Nano Lett. 20, 3427–3434 (2020).
Nagy, R. et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun. 10, 1954 (2019).
Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).
Itoh, K. M. & Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 4, 143–157 (2014).
Rong, X. et al. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat. Commun. 6, 8748 (2015).
Son, N. T. et al. Divacancy in 4H-SiC. Phys. Rev. Lett. 96, 055501 (2006).
Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).
Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).
Falk, A. L. et al. Optical polarization of nuclear spins in silicon carbide. Phys. Rev. Lett. 114, 247603 (2015).
Fuchs, G. D., Burkard, G., Klimov, P. V. & Awschalom, D. D. A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nat. Phys. 7, 789–793 (2011).
Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nat. Phys. 9, 29–33 (2013).
Gurudev Dutt, M. V. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).
Kalb, N., Humphreys, P. C., Slim, J. J. & Hanson, R. Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks. Phys. Rev. A 97, 062330 (2018).
Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).
Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71 (2017).
Müller, C. et al. Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 5, 8748 (2014).
Abobeih, M. H. et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 576, 411–415 (2019).
Seo, H. et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935 (2016).
Miao, K. C. et al. Electrically driven optical interferometry with spins in silicon carbide. Sci. Adv. 5, eaay0527 (2019).
Miao, K. C. et al. Universal coherence protection in a solid-state spin qubit. Science https://doi.org/10.1126/science.abc5186 (2020).
Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).
Bonato, C. et al. Optimized quantum sensing with a single electron spin using real-time adaptive measurements. Nat. Nanotechnol. 11, 247–252 (2016).
Bauch, E. et al. Ultralong dephasing times in solid-state spin ensembles via quantum control. Phys. Rev. X 8, 031025 (2018).
Ishikawa, T. et al. Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer. Nano Lett. 12, 34 (2012).
Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).
Whiteley, S. J. et al. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).
Jamonneau, P. et al. Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond. Phys. Rev. B 93, 024305 (2016).
Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).
Herbschleb, E. D. et al. Ultra-long coherence times amongst room-temperature solid-state spins. Nat. Commun. 10, 3766 (2019).
Witzel, W. M., Carroll, M. S., Cywiński, A. & Das Sarma, S. Quantum decoherence of the central spin in a sparse system of dipolar coupled spins. Phys. Rev. B 86, 035452 (2012).
Bar-Gill, N. et al. Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems. Nat. Commun. 3, 858 (2012).
Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron. 2, 151–158 (2019).
Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).
Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).
Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).
Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).
Petersen, E. S. et al. Nuclear spin decoherence of neutral 31 P donors in silicon: effect of environmental 29 Si nuclei. RAPID Commun. Phys. Rev. B 93, 161202 (2016).
Guichard, R., Balian, S. J., Wolfowicz, G., Mortemousque, P. A. & Monteiro, T. S. Decoherence of nuclear spins in the frozen core of an electron spin. Phys. Rev. B 91, 214303 (2015).
Dong, W., Calderon-Vargas, F. A. & Economou, S. E. Precise high-fidelity electron-nuclear spin entangling gates in NV centers via hybrid dynamical decoupling sequences. New J. Phys. 22, 073059 (2020).
Oliveros, A., Guiseppi-Elie, A. & Saddow, S. E. Silicon carbide: a versatile material for biosensor applications. Biomed. Microdevices 15, 353–368 (2013).
Lebedev, A. A. Radiation Effects in SiC Vol. 6 (Materials Research Forum, 2017).
Yang, W. & Liu, R. B. Quantum many-body theory of qubit decoherence in a finite-size spin bath. Phys. Rev. B 78, 085315 (2008).
Bourassa, A. et al. Dataset for “Entanglement and control of single nuclear spins in isotopically engineered silicon carbide”. Zenodo https://doi.org/10.5281/zenodo.3977802 (2020).
Acknowledgements
We thank E. O. Glen, S. Bayliss, G. Wolfowicz and P. J. Duda for useful discussions and assistance. We thank Quantum Opus for their assistance with detectors. This work made use of the UChicago MRSEC (NSF DMR-1420709) and Pritzker Nanofabrication Facility, which receives support from the SHyNE, a node of the NSF’s National Nanotechnology Coordinated Infrastructure (NSF ECCS-1542205). C.P.A., A.B., K.C.M., A.L.C. and D.D.A. were supported by grant nos. AFOSR FA9550-19-1-0358, DARPA D18AC00015KK1932 and ONR N00014-17-1-3026. T.O. was supported by KAKENHI (grant nos. 18H03770 and 20H00355). J.U.H was supported by the Swedish Energy Agency (grant no. 43611-1). N.T.S. was supported by the Swedish Research Council (grant no. VR 2016-04068) and the Carl Tryggers Stiftelse för Vetenskaplig Forskning (grant no. CTS 15:339). J.U.H. and N.T.S. were also supported by the EU H2020 project QuanTELCO (grant no. 862721) and the Knut and Alice Wallenberg Foundation (grant no. KAW 2018.0071).
Author information
Authors and Affiliations
Contributions
A.B. and C.P.A. conceived the experiments, performed the measurements and analysed the data. C.P.A. fabricated the devices. A.B. and K.C.M developed the experimental setup. M.O., H.M. and G.G. provided a theoretical framework. M.O. performed the numerical simulations and computations. A.L.C. assisted in device fabrication. H.A. and T.O. performed the electron irradiation. J.U.H. and N.T.S. grew the isotopically purified SiC samples. D.D.A. advised on all efforts. All authors contributed to manuscript preparation.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–21 and discussion.
Rights and permissions
About this article
Cite this article
Bourassa, A., Anderson, C.P., Miao, K.C. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. 19, 1319–1325 (2020). https://doi.org/10.1038/s41563-020-00802-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-020-00802-6
This article is cited by
-
Donor-acceptor pairs in wide-bandgap semiconductors for quantum technology applications
npj Computational Materials (2024)
-
Isotope engineering for spin defects in van der Waals materials
Nature Communications (2024)
-
Mapping a 50-spin-qubit network through correlated sensing
Nature Communications (2024)
-
Analysis, recent challenges and capabilities of spin-photon interfaces in Silicon carbide-on-insulator
npj Nanophotonics (2024)
-
The silicon vacancy centers in SiC: determination of intrinsic spin dynamics for integrated quantum photonics
npj Quantum Information (2024)