Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fatigue of graphene

Abstract

Materials can suffer mechanical fatigue when subjected to cyclic loading at stress levels much lower than the ultimate tensile strength, and understanding this behaviour is critical to evaluating long-term dynamic reliability. The fatigue life and damage mechanisms of two-dimensional (2D) materials, of interest for mechanical and electronic applications, are currently unknown. Here, we present a fatigue study of freestanding 2D materials, specifically graphene and graphene oxide (GO). Using atomic force microscopy, monolayer and few-layer graphene were found to exhibit a fatigue life of more than 109 cycles at a mean stress of 71 GPa and a stress range of 5.6 GPa, higher than any material reported so far. Fatigue failure in monolayer graphene is global and catastrophic without progressive damage, while molecular dynamics simulations reveal this is preceded by stress-mediated bond reconfigurations near defective sites. Conversely, functional groups in GO impart a local and progressive fatigue damage mechanism. This study not only provides fundamental insights into the fatigue enhancement behaviour of graphene-embedded nanocomposites, but also serves as a starting point for the dynamic reliability evaluation of other 2D materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fatigue testing of 2D materials.
Fig. 2: Fatigue of graphene.
Fig. 3: Fatigue of GO.
Fig. 4: Fatigue fracture morphology.
Fig. 5: MD fatigue simulations of graphene and GO.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors on reasonable request.

Code availability

The codes used for the fatigue data analysis in this study are available from the corresponding authors upon reasonable request.

References

  1. Suresh, S. Fatigue of Materials 2nd edn (Cambridge Univ. Press, 1998).

  2. Schijve, J. Fatigue of structures and materials in the 20th century and the state of the art. Int. J. Fatigue 25, 679–702 (2003).

    Article  Google Scholar 

  3. Ramanathan, T. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008).

    Article  CAS  Google Scholar 

  4. Chen, C. et al. Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923–927 (2013).

    Article  CAS  Google Scholar 

  5. Wang, Y. et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24, 4666–4670 (2014).

    Article  CAS  Google Scholar 

  6. Yin, B. et al. Highly stretchable, ultrasensitive and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl. Mater. Interfaces 9, 32054–32064 (2017).

    Article  CAS  Google Scholar 

  7. Liu, N. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017).

    Article  CAS  Google Scholar 

  8. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  CAS  Google Scholar 

  9. Yavari, F., Rafiee, M. A., Rafiee, J., Yu, Z. Z. & Koratkar, N. Dramatic increase in fatigue life in hierarchical graphene composites. ACS Appl. Mater. Interfaces 2, 2738–2743 (2010).

    Article  CAS  Google Scholar 

  10. Bortz, D. R., Heras, E. G. & Martin-Gullon, I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45, 238–245 (2012).

    Article  CAS  Google Scholar 

  11. Rafiee, M. A. et al. Fracture and fatigue in graphene nanocomposites. Small 6, 179–183 (2010).

    Article  CAS  Google Scholar 

  12. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  13. Lee, G.-H. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340, 1073–1076 (2013).

    Article  CAS  Google Scholar 

  14. Wei, X. et al. Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism. Nat. Commun. 6, 8029 (2015).

    Article  CAS  Google Scholar 

  15. Cui, T. et al. Effect of lattice stacking orientation and local thickness variation on the mechanical behavior of few layer graphene oxide. Carbon 136, 168–175 (2018).

    Article  CAS  Google Scholar 

  16. Pyttel, B., Schwerdt, D. & Berger, C. Very high cycle fatigue—is there a fatigue limit? Int. J. Fatigue 33, 49–58 (2011).

    Article  CAS  Google Scholar 

  17. Dursun, T. & Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862–871 (2014).

    Article  CAS  Google Scholar 

  18. Jiang, C., Zhang, H., Song, J. & Lu, Y. Digital micromirror device (DMD)-based high-cycle tensile fatigue testing of 1D nanomaterials. Extreme Mech. Lett. 18, 79–85 (2018).

    Article  Google Scholar 

  19. Zhang, H., Jiang, C. & Lu, Y. Low-cycle fatigue testing of Ni nanowires based on a micro-mechanical device. Exp. Mech. 57, 495–500 (2017).

    Article  CAS  Google Scholar 

  20. Li, P. et al. In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain. Nano Lett. 14, 480–485 (2014).

    Article  CAS  Google Scholar 

  21. Gao, Z., Ding, Y., Lin, S., Hao, Y. & Wang, Z. L. Dynamic fatigue studies of ZnO nanowires by in-situ transmission electron microscopy. Phys. Status Solidi Rapid Res. Lett. 3, 260–262 (2009).

    Article  CAS  Google Scholar 

  22. Zhang, J. Y. et al. Length scale dependent yield strength and fatigue behavior of nanocrystalline Cu thin films. Mater. Sci. Eng. A 528, 7774–7780 (2011).

    Article  CAS  Google Scholar 

  23. Hosseinian, E. & Pierron, O. N. Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale 5, 12532–12541 (2013).

    Article  CAS  Google Scholar 

  24. Luo, X., Zhu, X. & Zhang, G. Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat. Commun. 5, 3021 (2014).

    Article  CAS  Google Scholar 

  25. Sundararajan, S. & Bhushan, B. Development of AFM-based techniques to measure mechanical properties of nanoscale structures. Sens. Actuat. A 101, 338–351 (2002).

    Article  CAS  Google Scholar 

  26. Namazu, T. & Isono, Y. Fatigue life prediction citerion for micro-nanoscale single-crystal silicon structures. J. Microelectromech. Syst. 18, 129–137 (2009).

    Article  CAS  Google Scholar 

  27. Mayer, H. & Papakyriacou, M. Fatigue behaviour of graphite and interpenetrating graphite–aluminium composite up to 109 load cycles. Carbon 44, 1801–1807 (2006).

    Article  CAS  Google Scholar 

  28. Davies, A. R., Field, J. E., Takahashi, K. & Hada, K. Tensile and fatigue strength of free-standing CVD diamond. Diam. Relat. Mater. 14, 6–10 (2005).

    Article  CAS  Google Scholar 

  29. Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).

    Article  CAS  Google Scholar 

  30. Lee, C. et al. Elastic and frictional properties of graphene. Phys. Status Solidi 246, 2562–2567 (2009).

    Article  CAS  Google Scholar 

  31. Sakin, R. & Ay, I. Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites. Mater. Des. 29, 1170–1181 (2008).

    Article  CAS  Google Scholar 

  32. Selmy, A. I., Azab, N. A. & Abd El-Baky, M. A. Flexural fatigue characteristics of two different types of glass fiber/epoxy polymeric composite laminates with statistical analysis. Compos. B Eng. 45, 518–527 (2013).

    Article  CAS  Google Scholar 

  33. Zhurkov, S. N. Kinetic concept of the strength of solids. Int. J. Fract. 26, 295–307 (1984).

    Article  Google Scholar 

  34. Tsivinsky, S. V. Thermal fluctuation theory of durability of solids. Mater. Sci. Eng. 26, 13–22 (1976).

    Article  Google Scholar 

  35. Santucci, S., Vanel, L., Guarino, A., Scorretti, R. & Ciliberto, S. Thermal activation of rupture and slow crack growth. Europhys. Lett. 62, 320–326 (2003).

    Article  CAS  Google Scholar 

  36. Phoenix, S. L. & Tierney, L. J. A statistical model for the time dependent failure of unidirectional composite materials under local elastic load-sharing among fibers. Eng. Fract. Mech. 18, 193–215 (1983).

    Article  Google Scholar 

  37. Cao, C. et al. Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers. Sci. Adv. 4, eaao7202 (2018).

    Article  CAS  Google Scholar 

  38. Zandiatashbar, A. et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).

    Article  CAS  Google Scholar 

  39. Yoon, K. et al. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation. ACS Nano 10, 8376–8384 (2016).

    Article  CAS  Google Scholar 

  40. Yang, Z., Huang, Y., Bao, H., Xu, K. & Ma, F. Synergistic effects of grain boundaries and edges on fatigue deformations of sub-5 nm graphene nanoribbons. J. Mater. Sci. 52, 10871–10878 (2017).

    Article  CAS  Google Scholar 

  41. Cao, C., Daly, M., Singh, C. V., Sun, Y. & Filleter, T. High strength measurement of monolayer graphene oxide. Carbon 81, 497–504 (2015).

    Article  CAS  Google Scholar 

  42. Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015).

    Article  CAS  Google Scholar 

  43. Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

    Article  CAS  Google Scholar 

  44. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  46. Hendrik, J. Monkhorst. Special points for Brillouin-zone integretions. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  47. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  48. Chenoweth, K., Van Duin, A. C. T. & Goddard, W. A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112, 1040–1053 (2008).

    Article  CAS  Google Scholar 

  49. Medhekar, N. V., Ramasubramaniam, A., Ruoff, R. S. & Shenoy, V. B. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4, 2300–2306 (2010).

    Article  CAS  Google Scholar 

  50. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), the Erwin Edward Hart Professorship, the Ontario Ministry of Research and Innovation Early Career Researcher Award, the Canada Research Chairs Program and the Ontario Research Funds—Research Excellence programme. SEM and TEM measurements were performed at the Ontario Centre for the Characterization of Advanced Materials (OCCAM). MD simulations were performed at the SciNet and Calculquebec consortia. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund-Research Excellence and the University of Toronto. We thank J. Li at Asylum Research for technical assistance with experiments.

Author information

Authors and Affiliations

Authors

Contributions

T.C. conceived the idea. T.F. and Y.S. supervised T.C. on the sample preparation and all the fatigue experiments. C.V.S. supervised S.M. on the MD and DFT simulations. F.N. and T.C. performed FEA. P.M.A. directed P.M.S. on GO synthesis. G.C. programmed the code for data analysis. J.T. conducted the TEM measurements. T.C. and S.M. wrote the manuscript. All authors discussed the results and analysis, and reviewed and revised the final manuscript.

Corresponding authors

Correspondence to Chandra Veer Singh, Yu Sun or Tobin Filleter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion and methods, Figs. 1–16, Table 1 and references.

Supplementary Video 1

Cyclic loading of graphene showing bond reconfiguration and catastrophic failure—1.

Supplementary Video 2

Cyclic loading of graphene showing bond reconfiguration and catastrophic failure—2.

Supplementary Video 3

Static loading of graphene oxide at a strain rate of 108/s.

Supplementary Video 4

Static loading of graphene oxide at a strain rate of 109/s.

Supplementary Video 5

Static loading of graphene oxide at a strain rate of 1010/s.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, T., Mukherjee, S., Sudeep, P.M. et al. Fatigue of graphene. Nat. Mater. 19, 405–411 (2020). https://doi.org/10.1038/s41563-019-0586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0586-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing