Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum de-trapping and transport of heavy defects in tungsten

Abstract

The diffusion of defects in crystalline materials1 controls macroscopic behaviour of a wide range of processes, including alloying, precipitation, phase transformation and creep2. In real materials, intrinsic defects are unavoidably bound to static trapping centres such as impurity atoms, meaning that their diffusion is dominated by de-trapping processes. It is generally believed that de-trapping occurs only by thermal activation. Here, we report the direct observation of the quantum de-trapping of defects below around one-third of the Debye temperature. We successfully monitored the de-trapping and migration of self-interstitial atom clusters, strongly trapped by impurity atoms in tungsten, by triggering de-trapping out of equilibrium at cryogenic temperatures, using high-energy electron irradiation and in situ transmission electron microscopy. The quantum-assisted de-trapping leads to low-temperature diffusion rates orders of magnitude higher than a naive classical estimate suggests. Our analysis shows that this phenomenon is generic to any crystalline material.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: One-dimensional SIA cluster motion.
Fig. 2: Characterization of the motion frequency of SIA cluster de-trapping.
Fig. 3: Motion frequency of SIA cluster de-trapping versus temperature.

Data availability

The data generated and/or analysed within the current study will be made available on reasonable request to the corresponding author.

References

  1. 1.

    Mehrer, H. Diffusion in Solids Vol. 155 (Springer, 2007).

  2. 2.

    Gupta, D. Diffusion Processes in Advanced Technological Materials (William Andrew Inc., 2005).

  3. 3.

    Was, G. S. Fundamentals of Radiation Materials Science (Springer, 2007).

  4. 4.

    Fu, C.-C., Torre, J. D., Willaime, F., Bocquet, J.-L. & Barbu, A. Multiscale modelling of defect kinetics in irradiated iron. Nat. Mater. 4, 68–74 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Arakawa, K. et al. Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956–959 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Bai, X.-M., Voter, A. F., Hoagland, R. G., Nastasi, M. & Uberuaga, B. P. Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631–1634 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Kadono, R. et al. Quantum diffusion of positive muons in copper. Phys. Rev. B. 39, 23–41 (1989).

    CAS  Article  Google Scholar 

  8. 8.

    Sundell, P. G. & Wahnström, G. Activation energies for quantum diffusion of hydrogen in metals and on metal surfaces using delocalized nuclei within the density-functional theory. Phys. Rev. Lett. 92, 155901 (2004).

    Article  Google Scholar 

  9. 9.

    Ehrhart, P., Jung, P., Schultz, H. & Ullmaier, H. Atomic Defects in Metals 25 (Springer-Verlag, 1991).

  10. 10.

    Derlet, P. M., Nguyen-Manh, D. & Dudarev, S. L. Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys. Rev. B. 76, 054107 (2007).

    Article  Google Scholar 

  11. 11.

    Swinburne, T. D., Dudarev, S. L. & Sutton, A. P. Classical mobility of highly mobile crystal defects. Phys. Rev. Lett. 113, 215501 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Wollenberger, H. J. in Physical Metallurgy, Part II (eds R. W. Chan & P. Haasen) 1139 (North Holland Physics Publishing, 1983).

  13. 13.

    Pushkarov, D. I. Quantum theory of crowdions at low temperatures. Soviet Journal of Experimental and Theoretical Physics 37, 322–325 (1973).

    Google Scholar 

  14. 14.

    Flynn, C. P. Resonance mode hopping and the stage I annealing of metals. Thin Solid Films 25, 37–43 (1975).

    CAS  Article  Google Scholar 

  15. 15.

    Swinburne, T. D., Ma, P.-W. & Dudarev, S. L. Low temperature diffusivity of self-interstitial defects in tungsten. N. J. Phys. 19, 073024 (2017).

    Article  Google Scholar 

  16. 16.

    Proville, L., Rodney, D. & Marinica, M.-C. Quantum effect on thermally activated glide of dislocations. Nat. Mater. 11, 845–849 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Ohresser, P. et al. Surface diffusion of Cr adatoms on Au(111) by quantum tunneling. Phys. Rev. Lett. 95, 195901 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    Fitzgerald, S. P. & Nguyen-Manh, D. Peierls potential for crowdions in the bcc transition metals. Phys. Rev. Lett. 101, 115504 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Amino, T., Arakawa, K. & Mori, H. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy. Sci. Rep. 6, 26099 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Wirth, B. D., Odette, G. R., Maroudas, D. & Lucas, G. E. Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. J. Nucl. Mater. 276, 33–40 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    Marian, J. et al. Dynamics of self-interstitial cluster migration in pure α-Fe and Fe-Cu alloys. Phys. Rev. B. 65, 144102 (2002).

    Article  Google Scholar 

  22. 22.

    Osetsky, Y. N., Bacon, D. J., Serra, A., Singh, B. N. & Golubov, S. I. One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper. Philos. Mag. 83, 61–91 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    Dudarev, S. L. The non-Arrhenius migration of interstitial defects in bcc transition metals. Comptes Rendus Phys. 9, 409–417 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    Swinburne, T. D., Dudarev, S. L., Fitzgerald, S. P., Gilbert, M. R. & Sutton, A. P. Theory and simulation of the diffusion of kinks on dislocations in bcc metals. Phys. Rev. B. 87, 064108 (2013).

    Article  Google Scholar 

  25. 25.

    Arakawa, K., Amino, T. & Mori, H. One-dimensional glide motion of ‘naked’ 1/2<111> prismatic dislocation loops in iron. ISIJ Int. 54, 2421–2424 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Dausinger, F. & Schultz, H. Long-range migration of self-interstitial atoms in tungsten. Phys. Rev. Lett. 35, 1773–1775 (1975).

    CAS  Article  Google Scholar 

  27. 27.

    Dausinger, F. Die Tieftemperaturerholung in elektronenbestrahltem Wolfram. Philos. Mag. A 37, 819–836 (1978).

    CAS  Article  Google Scholar 

  28. 28.

    Mizubayashi, H. & Okuda, S. Elastic after-effect studies of self-interstitials in tungsten after fast neutron irradiation at 5 K. Radiat. Eff. 54, 201–215 (1981).

    CAS  Article  Google Scholar 

  29. 29.

    Dudarev, S. L., Derlet, P. M. & Woo, C. H. Driven mobility of self-interstitial defects under electron irradiation. Nucl. Instrum. Methods Phys. Res. B. 256, 253–259 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    Satoh, Y., Matsui, H. & Hamaoka, T. Effects of impurities on one-dimensional migration of interstitial clusters in iron under electron irradiation. Phys. Rev. B. 77, 94135 (2008).

    Article  Google Scholar 

  31. 31.

    Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt, Rinehart and Winston, 1978).

  32. 32.

    Amino, T., Arakawa, K. & Mori, H. Activation energy for long-range migration of self-interstitial atoms in tungsten obtained by direct measurement of radiation-induced point-defect clusters. Philos. Mag. Lett. 91, 86–96 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Maury, F., Biget, M., Vajda, P., Lucasson, A. & Lucasson, P. Frenkel pair creation and stage I recovery in W crystals irradiated near threshold. Radiat. Eff. 38, 53–65 (1978).

    CAS  Article  Google Scholar 

  34. 34.

    Arakawa, K., Amino, T. & Mori, H. Direct observation of the coalescence process between nanoscale dislocation loops with different Burgers vectors. Acta Mater. 59, 141–145 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. Electron Microscopy of Thin Crystals (Butterworth, 1965).

  36. 36.

    Jenkins, M. L. & Kirk, M. A. Characterization of Radiation Damage by Transmission Electron Microscopy (Institute of Physics, 2001).

  37. 37.

    Kiritani, M. Electron radiation induced diffusion of point defects in metals. J. Phys. Soc. Jpn 40, 1035–1042 (1976).

    CAS  Article  Google Scholar 

  38. 38.

    Nguyen-Manh, D., Horsfield, A. P. & Dudarev, S. L. Self-interstitial atom defects in bcc transition metals: group-specific trends. Phys. Rev. B. 73, 020101 (R) (2006).

    Article  Google Scholar 

  39. 39.

    Oen, O. S. Cross Sections for Atomic Displacements in Solids by Fast Electrons (Oak Ridge National Laboratory, 1965).

  40. 40.

    Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990).

    Article  Google Scholar 

  41. 41.

    Dudarev, S. L. Coherent motion of interstitial defects in a crystalline material. Philos. Mag. 83, 3577–3597 (2003).

    CAS  Article  Google Scholar 

  42. 42.

    Benderskii, V., Makarov, D. & Wight, C. Chemical Dynamics at Low Temperature (Wiley, 1994).

  43. 43.

    Wang, C. Z., Chan, C. T. & Ho, K. M. Tight-binding molecular-dynamics study of phonon anharmonic effects in silicon and diamond. Phys. Rev. B. 42, 11276–11283 (1990).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by JSPS KAKENHI (grant nos. 15H04244 and 18K18951), ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Q-LEAP Program (MEXT: Ministry of Education, Culture, Sports, Science and Technology—Japan), and the Iron and Steel Institute of Japan Research Promotion Grant. Part of this work was supported by the ‘Advanced Characterization Nanotechnology Platform, Nanotechnology Platform Programs’ of MEXT, at Institute of Materials and Systems for Sustainability (Nanotechnology Open Facilities) in Nagoya University and at Research Centre for Ultra-High Voltage Electron Microscopy (Nanotechnology Open Facilities) in Osaka University and TATARA Nanotechnology Project Centre in Shimane University. M.C.M., L.P. and A.M.G. acknowledge support from the GENCI-(CINES/CCRT) computer centre under grant no. A0070906973. A.M.G. and M.C.M acknowledge the financial support of the Cross-Disciplinary Program on Numerical Simulation of CEA, the French Alternative Energies and Atomic Energy Commission. S.P.F. acknowledges support from the UK EPSRC, grant no. EP/R005974/1. The work at CCFE has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2019–2020 under grant agreement no. 633053 and funding from the RCUK Energy Programme (grant no. EP/T012250/1). The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Author information

Affiliations

Authors

Contributions

K.A., M.C.M. and L.P. designed the study. K.A., T.Y., T.A., S.A., Y.Y., K.H., N.T., H.Y., T.Y. and H.M. performed the experiments. M.C.M., S.F., L.P., D.N.M., A.M.G., S.L.D., P.W.M. and T.D.S. performed the theoretical works. K.A., M.C.M., S.F. and S.L.D. wrote the main draft. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kazuto Arakawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Suppression of the SIA cluster Peierls potential.

Top: suppression of Peierls potential as delocalization increases (and μ decreases). Both the standard single-sine and more accurate double-sine Frenkel-Kontorova models predict a negligibly small barrier for cluster diffusion after escape from the traps. Bottom: atomic positions showing increased delocalization as μ decreases from 0.75 (open circles) through 0.5 (grey circles) to 0.25 (solid circles).

Extended Data Fig. 2 Calculation of the SIA cluster binding energies.

a, DFT calculation of the SIA-carbon binding energy vs. separation in plane transverse to the crowdion axis. b, Elastic calculation of the SIA cluster-dilatation centre binding energy (left) and cluster pressure field (right).

Extended Data Fig. 3 Average maximum hop distance per 10 hops vs temperature.

A range of binding energies exist, corresponding to different cluster-impurity separations. This means more impurities are effective traps at lower temperatures, leading to a reduced hop distance.

Extended Data Fig. 4 Motion frequency vs irradiation time at 31 K, with beam energy 300 keV.

The decrease in motion frequency, attributed to the depletion of vacancies near the clusters, is still clear, and demonstrates that the direct mechanism (which would induce a motion frequency constant in time) is not wholly responsible for the cluster motion. Indeed, at short times the motion is dominated by the indirect mechanism, by at least a factor of 5.

Extended Data Fig. 5 The correspondence between the effective classical temperature Tc (our model) and the quantum (true) temperature Tq of perfect bulk bcc W.

The classical, DFT phonons and our model are shown in red, dark blue and light blue respectively.

Supplementary information

Supplementary Information

Supplementary Discussion

Supplementary Video 1

One-dimensional motion of nanoscale SIA clusters. Acceleration voltage, 1,000 kV; beam intensity, 2 × 1025 m−2 s−1 and temperature, 260 K. The frame width is 160 nm.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arakawa, K., Marinica, MC., Fitzgerald, S. et al. Quantum de-trapping and transport of heavy defects in tungsten. Nat. Mater. 19, 508–511 (2020). https://doi.org/10.1038/s41563-019-0584-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing