Quantum dot solids showing state-resolved band-like transport


Improving charge mobility in quantum dot (QD) films is important for the performance of photodetectors, solar cells and light-emitting diodes. However, these applications also require preservation of well defined QD electronic states and optical transitions. Here, we present HgTe QD films that show high mobility for charges transported through discrete QD states. A hybrid surface passivation process efficiently eliminates surface states, provides tunable air-stable n and p doping and enables hysteresis-free filling of QD states evidenced by strong conductance modulation. QD films dried at room temperature without any post-treatments exhibit mobility up to μ ~ 8 cm2 V−1 s−1 at a low carrier density of less than one electron per QD, band-like behaviour down to 77 K, and similar drift and Hall mobilities at all temperatures. This unprecedented set of electronic properties raises important questions about the delocalization and hopping mechanisms for transport in QD solids, and introduces opportunities for improving QD technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: HgTe QDs.
Fig. 2: State filling in HgTe QD FETs.
Fig. 3: Charge transport studies of 13.1 ± 1.1 nm HgTe QD solids.
Fig. 4: Hall effect, Seebeck effect and photoconductivity of HgTe QD films.

Data availability

The data sets generated and analysed during the current study are available from the corresponding author on reasonable request. Source data for Figs. 1–4 are provided with the paper.


  1. 1.

    Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016).

  2. 2.

    Tang, X., Ackerman, M. M., Chen, M. & Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photon. 13, 277–282 (2019).

  3. 3.

    Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018).

  4. 4.

    Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348–352 (2011).

  5. 5.

    Talgorn, E. et al. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids. Nat. Nanotechnol. 6, 733–739 (2011).

  6. 6.

    Choi, J.-H. et al. Bandlike transport in strongly coupled and doped quantum dot solids: a route to high-performance thin-film electronics. Nano Lett. 12, 2631–2638 (2012).

  7. 7.

    Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013 (2015).

  8. 8.

    Chen, T. et al. Metal–insulator transition in films of doped semiconductor nanocrystals. Nat. Mater. 15, 299 (2015).

  9. 9.

    Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

  10. 10.

    Greenberg, B. L. et al. ZnO nanocrystal networks near the insulator–metal transition: tuning contact radius and electron density with intense pulsed light. Nano Lett. 17, 4634–4642 (2017).

  11. 11.

    Roest, A. L., Kelly, J. J., Vanmaekelbergh, D. & Meulenkamp, E. A. Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. Phys. Rev. Lett. 89, 036801 (2002).

  12. 12.

    Yu, D., Wang, C. & Guyot-Sionnest, P. n-type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).

  13. 13.

    Chen, M. & Guyot-Sionnest, P. Reversible electrochemistry of mercury chalcogenide colloidal quantum dot films. ACS Nano 11, 4165–4173 (2017).

  14. 14.

    Yu, D., Wang, C., Wehrenberg, B. L. & Guyot-Sionnest, P. Variable range hopping conduction in semiconductor nanocrystal solids. Phys. Rev. Lett. 92, 216802 (2004).

  15. 15.

    Nika, D. L., Pokatilov, E. P., Shao, Q. & Balandin, A. A. Charge-carrier states and light absorption in ordered quantum dot superlattices. Phys. Rev. B 76, 125417 (2007).

  16. 16.

    Shabaev, A., Efros, A. L. & Efros, A. L. Dark and photo-conductivity in ordered array of nanocrystals. Nano Lett. 13, 5454–5461 (2013).

  17. 17.

    Whitham, K. et al. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 15, 557 (2016).

  18. 18.

    Guyot-Sionnest, P. Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 3, 1169–1175 (2012).

  19. 19.

    Keuleyan, S. E., Guyot-Sionnest, P., Delerue, C. & Allan, G. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano 8, 8676–8682 (2014).

  20. 20.

    Goubet, N. et al. Terahertz HgTe nanocrystals: beyond confinement. J. Am. Chem. Soc. 140, 5033–5036 (2018).

  21. 21.

    Hudson, M. H. et al. Conduction band fine structure in colloidal HgTe quantum dots. ACS Nano 12, 9397–9404 (2018).

  22. 22.

    Allan, G. & Delerue, C. Tight-binding calculations of the optical properties of HgTe nanocrystals. Phys. Rev. B 86, 165437 (2012).

  23. 23.

    Shen, G., Chen, M. & Guyot-Sionnest, P. Synthesis of nonaggregating HgTe colloidal quantum dots and the emergence of air-stable n-doping. J. Phys. Chem. Lett. 8, 2224–2228 (2017).

  24. 24.

    Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).

  25. 25.

    Shklovskii, B. I. & Efros, A. L. Electronic Properties of Doped Semiconductors (Springer, 1984).

  26. 26.

    Chu, I.-H., Radulaski, M., Vukmirovic, N., Cheng, H.-P. & Wang, L.-W. Charge transport in a quantum dot supercrystal. J. Phys. Chem. C 115, 21409–21415 (2011).

  27. 27.

    Prodanović, N., Vukmirović, N., Ikonić, Z., Harrison, P. & Indjin, D. Importance of polaronic effects for charge transport in CdSe quantum dot solids. J. Phys. Chem. Lett. 5, 1335–1340 (2014).

  28. 28.

    Reich, K. V., Chen, T. & Shklovskii, B. I. Theory of a field-effect transistor based on a semiconductor nanocrystal array. Phys. Rev. B 89, 235303 (2014).

  29. 29.

    Beverly, K. C. et al. Quantum dot artificial solids: understanding the static and dynamic role of size and packing disorder. Proc. Natl Acad. Sci. USA 99, 6456–6459 (2002).

  30. 30.

    Fratini, S., Mayou, D. & Ciuchi, S. The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26, 2292–2315 (2016).

  31. 31.

    Kang, S. D. & Snyder, G. J. Charge-transport model for conducting polymers. Nat. Mater. 16, 252–257 (2016).

  32. 32.

    Kaiser, A. B. Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64, 1–49 (2000).

  33. 33.

    Sirringhaus, H., Sakanoue, T. & Chang, J.-F. Charge-transport physics of high-mobility molecular semiconductors. Phys. Status Solidi B 249, 1655–1676 (2012).

  34. 34.

    Uemura, T. et al. Temperature dependence of the Hall effect in pentacene field-effect transistors: possibility of charge decoherence induced by molecular fluctuations. Phys. Rev. B 85, 035313 (2012).

  35. 35.

    Yi, H. T., Gartstein, Y. N. & Podzorov, V. Charge carrier coherence and Hall effect in organic semiconductors. Sci. Rep. 6, 23650 (2016).

  36. 36.

    Chang, J.-F. et al. Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. Phys. Rev. Lett. 107, 066601 (2011).

  37. 37.

    Wang, S., Ha, M., Manno, M., Daniel Frisbie, C. & Leighton, C. Hopping transport and the Hall effect near the insulator–metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3, 1210 (2012).

  38. 38.

    Meton, M. & Gerard, P. Hall effect in dilute electrolytes. Chem. Phys. Lett. 44, 582–585 (1976).

  39. 39.

    Holstein, T. Hall effect in impurity conduction. Phys. Rev. 124, 1329–1347 (1961).

  40. 40.

    Chien, C. L. & Westgate, C. R. The Hall Effect and its Applications (Plenum, 1980).

  41. 41.

    Klein, R. S. Investigation of the Hall effect in impurity-hopping conduction. Phys. Rev. B 31, 2014–2021 (1985).

  42. 42.

    Kang, S. D., Dylla, M. & Snyder, G. J. Thermopower-conductivity relation for distinguishing transport mechanisms: polaron hopping in CeO2 and band conduction in SrTiO3. Phys. Rev. B 97, 235201 (2018).

  43. 43.

    Kaiser, A. B. Thermoelectric power and conductivity of heterogeneous conducting polymers. Phys. Rev. B 40, 2806–2813 (1989).

  44. 44.

    Burns, M. J. & Chaikin, P. M. Interaction effects and thermoelectric power in low-temperature hopping. J. Phys. C: Solid State Phys. 18, L743–L749 (1985).

  45. 45.

    Troisi, A. The speed limit for sequential charge hopping in molecular materials. Org. Electron. 12, 1988–1991 (2011).

  46. 46.

    Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410 (2013).

  47. 47.

    Rosencher, E. & Vinter, B. Optoelectronics (Cambridge Univ. Press, 2002).

  48. 48.

    Chen, M. et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors. ACS Photon. 6, 2358 (2019).

Download references


This work was supported by the University of Chicago Materials Research Science and Engineering Center, which is funded by the NSF under award number DMR-1420709, by the Defense Advanced Research Projects Agency (DARPA) as a subcontract to Voxtel, Inc. for the Wired program, by the Department of Defense (DOD) Air Force Office of Scientific Research under grant number FA9550-18-1-0099 and by the National Science Foundation under grant DMR-1708378.

Author information

M.H.H. carried out experiments on QD synthesis. X.L. and Y.W. developed the methods for ligands exchange. V.K. carried out SAXS measurements and data analysis. X.L. and M.C. prepared thin-film devices and carried out charge-transport experiments. X.L., M.C., P.G.-S. and D.V.T. performed the analysis of the transport data. The manuscript was written by D.V.T. and P.G.-S. All the authors discussed the results and commented on the manuscript.

Correspondence to Philippe Guyot-Sionnest or Dmitri V. Talapin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials and methods, Discussion 1–10, Tables 1–5 and Figs. 1–19.

Source data

Source Data Fig. 1

Unprocessed Fourier-transform infrared absorption spectra of undoped and n-type doped 12.5 ± 1.0 nm HgTe QDs and fitting. SAXS data and fitting.

Source Data Fig. 2

Unprocessed FET transport data of HgTe and intraband spectra.

Source Data Fig. 3

Mobility as a function of temperature.

Source Data Fig. 4

Hall voltage, Seebeck coefficient, Hall mobility and FET mobility at different temperatures. Photoresponse data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lan, X., Chen, M., Hudson, M.H. et al. Quantum dot solids showing state-resolved band-like transport. Nat. Mater. (2020). https://doi.org/10.1038/s41563-019-0582-2

Download citation