Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator

Abstract

The intricate interplay between non-trivial topology and magnetism in two-dimensional materials can lead to the emergence of interesting phenomena such as the quantum anomalous Hall effect. Here we investigate the quantum transport of both bulk crystal and exfoliated MnBi2Te4 flakes in a field-effect transistor geometry. For the six septuple-layer device tuned into the insulating regime, we observe a large longitudinal resistance and zero Hall plateau, which are characteristics of an axion insulator state. The robust axion insulator state occurs in zero magnetic field, over a wide magnetic-field range and at relatively high temperatures. Moreover, a moderate magnetic field drives a quantum phase transition from the axion insulator phase to a Chern insulator phase with zero longitudinal resistance and quantized Hall resistance h/e2, where h is Planck’s constant and e is electron charge. Our results pave the way for using even-number septuple-layer MnBi2Te4 to realize the quantized topological magnetoelectric effect and axion electrodynamics in condensed matter systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transport characterization of MnBi2Te4 single crystal.
Fig. 2: Characterization of a six-SL MnBi2Te4 device.
Fig. 3: Gate-dependent transport properties and the magnetic-field-driven axion insulator to Chern insulator transition.
Fig. 4: Temperature evolution and quantum critical behaviour of the axion insulator to Chern insulator transition.

Similar content being viewed by others

Data availability

All raw and derived data used to support the findings of this work are available from the authors on request.

References

  1. Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Google Scholar 

  2. Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    CAS  Google Scholar 

  3. Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    Google Scholar 

  4. Chang, C. Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    CAS  Google Scholar 

  5. Liu, M. et al. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator. Sci. Adv. 2, e1600167 (2016).

    Google Scholar 

  6. Grauer, S. et al. Scaling of the quantum anomalous Hall effect as an indicator of axion electrodynamics. Phys. Rev. Lett. 118, 246801 (2017).

    CAS  Google Scholar 

  7. Qi, X. L., Hughes, T. L. & Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Google Scholar 

  8. Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    CAS  Google Scholar 

  9. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Google Scholar 

  10. Nomura, K. & Nagaosa, N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys. Rev. Lett. 106, 166802 (2011).

    Google Scholar 

  11. Morimoto, T., Furusaki, A. & Nagaosa, N. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B 92, 085113 (2015).

    Google Scholar 

  12. Wang, J., Lian, B., Qi, X. L. & Zhang, S. C. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Phys. Rev. B 92, 081107 (2015).

    Google Scholar 

  13. Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

    CAS  Google Scholar 

  14. Mogi, M. et al. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Sci. Adv. 3, eaao1669 (2017).

    Google Scholar 

  15. Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

    CAS  Google Scholar 

  16. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    Google Scholar 

  17. Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    CAS  Google Scholar 

  18. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    CAS  Google Scholar 

  19. Otrokov, M. M. et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater. 4, 025082 (2017).

    Google Scholar 

  20. Otrokov, M. M. et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019).

    CAS  Google Scholar 

  21. Otrokov M. M. et al. Prediction and observation of the first antiferromagnetic topological insulator. Preprint at https://arxiv.org/abs/1809.07389 (2018).

  22. Zeugner, A. et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater. 31, 2795–2806 (2019).

    CAS  Google Scholar 

  23. Lee, S. H. et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 1, 012011 (2019).

    Google Scholar 

  24. Chen, B. et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nat. Commun. 10, 4469 (2019).

    Google Scholar 

  25. Cui, J. H. et al. Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 99, 155125 (2019).

    CAS  Google Scholar 

  26. Yan, J. Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    CAS  Google Scholar 

  27. Lee, D. S. et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. Crystengcomm 15, 5532–5538 (2013).

    CAS  Google Scholar 

  28. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212 (2015).

    CAS  Google Scholar 

  29. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Google Scholar 

  30. Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

    CAS  Google Scholar 

  31. Liu, C. et al. Dimensional crossover-induced topological Hall effect in a magnetic topological insulator. Phys. Rev. Lett. 119, 176809 (2017).

    Google Scholar 

  32. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    CAS  Google Scholar 

  33. Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 1–8 (2018).

    Google Scholar 

  34. Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    CAS  Google Scholar 

  35. Wong, L. W., Jiang, H. W., Trivedi, N. & Palm, E. Disorder-tuned transition between a quantum Hall liquid and Hall insulator. Phys. Rev. B 51, 18033–18036 (1995).

    CAS  Google Scholar 

  36. Shahar, D., Tsui, D. C., Shayegan, M., Bhatt, R. N. & Cunningham, J. E. Universal conductivity at the quantum Hall liquid to insulator transition. Phys. Rev. Lett. 74, 4511–4514 (1995).

    CAS  Google Scholar 

  37. Pan, W., Shahar, D., Tsui, D. C., Wei, H. P. & Razeghi, M. Quantum Hall liquid-to-insulator transition in In1-xGaxAs/InP heterostructures. Phys. Rev. B 55, 15431–15433 (1997).

    CAS  Google Scholar 

  38. Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2CaCu3O7-x films. Phys. Rev. Lett. 107, 027001 (2011).

    Google Scholar 

  39. Deng Y. et al Magnetic-field-induced quantized anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Preprint at https://arxiv.org/abs/1904.11468 (2019).

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  41. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1997).

    CAS  Google Scholar 

  43. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank W. Duan, S. Fan, X. Feng, Z. Hao, L. Yang and S. Ye for helpful discussions and technical supports. This work is supported by the Basic Science Centre Project of NSFC (grant no. 51788104), the National Key R&D Program of China (grant nos. 2018YFA0307100, 2017YFA0302900 and 2018YFA0305603), MOST of China (grant no. 2015CB921000) and Natural Science Foundation of China (grant nos. 51991343 and 21975140). This work is also partially supported by the Beijing Advanced Innovation Centre for Future Chip (ICFC).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y.W., J.S.Z., Y.X. and K.H. proposed the research and Y.Y.W. supervised. C.L. and Y.X.L. carried out the transport measurements. Y.C.W. fabricated and characterized the devices. H.L. and Y.W. grew the MnBi2Te4 bulk crystals. Y.X. and J.H.L. performed first-principles calculations. Y.Y.W., J.S.Z., Y.X. and C.L. prepared the manuscript with comments from all authors.

Corresponding authors

Correspondence to Yong Xu, Jinsong Zhang or Yayu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, Y., Li, H. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020). https://doi.org/10.1038/s41563-019-0573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0573-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing