Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway


Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and β1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/β1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell–extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/α-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Tension on syndecan-4 induces Rho-dependent adaptive stiffening mediated by epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K).
Fig. 2: Tension on syndecan-4 leads to PI3K-dependent cell-wide growth of focal adhesions.
Fig. 3: Tension on syndecan-4 triggers cell-wide integrin activation via PIP3 binding to kindlin-2.
Fig. 4: Tension on syndecan-4 activates RhoA via integrin ligation and regulates yes-associated protein (YAP) activity.
Fig. 5: Syndecan-4 mechanotransduction requires the V region, which changes conformation under force.
Fig. 6: Tension stabilizes a syndecan-4–α-actinin–F-actin linkage to facilitate adaptive stiffening.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The MATLAB code used to track bead displacements in the magnetic tweezers experiments is available from A.E.d.R.H. upon reasonable request. Code used in the MD simulations is available from V.P.H. upon reasonable request.


  1. 1.

    Kim, C. W., Goldberger, O. A., Gallo, R. L. & Bernfield, M. Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue- and development-specific patterns. Mol. Biol. Cell 5, 797–805 (1994).

    CAS  Article  Google Scholar 

  2. 2.

    Elfenbein, A. & Simons, M. Syndecan-4 signaling at a glance. J. Cell Sci. 126, 3799–3804 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Okina, E., Manon-Jensen, T., Whiteford, J. R. & Couchman, J. R. Syndecan proteoglycan contributions to cytoskeletal organization and contractility. Scand. J. Med. Sci. Sports 19, 479–489 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Morgan, M. R., Humphries, M. J. & Bass, M. D. Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8, 957–969 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Saoncella, S. et al. Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc. Natl Acad. Sci. USA 96, 2805–2810 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    Fiore, V. F., Ju, L., Chen, Y., Zhu, C. & Barker, T. H. Dynamic catch of a Thy-1–α5β1+syndecan-4 trimolecular complex. Nat. Commun. 5, 4886 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Echtermeyer, F. et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J. Clin. Invest. 107, R9–R14 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Longley, R. L. et al. Control of morphology, cytoskeleton and migration by syndecan-4. J. Cell Sci. 112, 3421–3431 (1999).

    CAS  Google Scholar 

  9. 9.

    Cavalheiro, R. P. et al. Coupling of vinculin to F-actin demands syndecan-4 proteoglycan. Matrix Biol. 63, 23–37 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Okina, E., Grossi, A., Gopal, S., Multhaupt, H. A. & Couchman, J. R. Alpha-actinin interactions with syndecan-4 are integral to fibroblast-matrix adhesion and regulate cytoskeletal architecture. Int. J. Biochem. Cell Biol. 44, 2161–2174 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Gopal, S. et al. Heparan sulfate chain valency controls syndecan-4 function in cell adhesion. J. Biol. Chem. 285, 14247–14258 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Chen, Y. et al. Matrix contraction by dermal fibroblasts requires transforming growth factor-β/activin-linked kinase 5, heparan sulfate-containing proteoglycans and MEK/ERK. Am. J. Pathol. 167, 1699–1711 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    Florian, J. A. et al. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93, e136–e142 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    Moon, J. J. et al. Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. J. Cell. Physiol. 203, 166–176 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    Baeyens, N. et al. Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proc. Natl Acad. Sci. USA 111, 17308–17313 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Wang, Y. et al. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Development 143, 4441–4451 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Bellin, R. M. et al. Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proc. Natl Acad. Sci. USA 106, 22102–22107 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    Huang, C.-P., Cheng, C.-M., Su, H.-L. & Lin, Y.-W. Syndecan-4 promotes epithelial tumor cells spreading and regulates the turnover of PKCα activity under mechanical stimulation on the elastomeric substrates. Cell. Physiol. Biochem. 36, 1291–1304 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Guilluy, C. et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat. Cell Biol. 13, 722–727 (2011).

    Article  CAS  Google Scholar 

  20. 20.

    Collins, C. et al. Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway. Curr. Biol. 22, 2087–2094 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Muhamed, I. et al. E-cadherin-mediated force transduction signals regulate global cell mechanics. J. Cell Sci. 129, 1843–1854 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Guilluy, C. et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16, 376–381 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Pierschbacher, M. D., Hayman, E. G. & Ruoslahti, E. Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell 26, 259–267 (1981).

    CAS  Article  Google Scholar 

  24. 24.

    Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Wang, H., Jin, H. & Rapraeger, A. C. Syndecan-1 and syndecan-4 capture epidermal growth factor receptor family members and the α3β1 integrin via binding sites in their ectodomains: novel synstatins prevent kinase capture and inhibit α6β4-integrin-dependent epithelial cell motility. J. Biol. Chem. 290, 26103–26113 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Sakaguchi, M. et al. S100A11, an dual mediator for growth regulation of human keratinocytes. Mol. Biol. Cell 19, 78–85 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Muller-Deubert, S., Seefried, L., Krug, M., Jakob, F. & Ebert, R. Epidermal growth factor as a mechanosensitizer in human bone marrow stromal cells. Stem Cell Res. 24, 69–76 (2017).

    Article  CAS  Google Scholar 

  29. 29.

    Saxena, M. et al. EGFR and HER2 activate rigidity sensing only on rigid matrices. Nat. Mater. 16, 775–781 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Morgan, M. R. et al. Syndecan-4 phosphorylation is a control point for integrin recycling. Dev. Cell 24, 472–485 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Calderwood, D. A., Campbell, I. D. & Critchley, D. R. Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14, 503–517 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Liu, J. et al. Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J. Biol. Chem. 286, 43334–43342 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Liu, Y., Zhu, Y., Ye, S. & Zhang, R. Crystal structure of kindlin-2 PH domain reveals a conformational transition for its membrane anchoring and regulation of integrin activation. Protein Cell 3, 434–440 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Qu, H. et al. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J. Cell Sci. 124, 879–891 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Bass, M. D. & Humphries, M. J. Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling. Biochem. J. 368, 1–15 (2002).

    CAS  Article  Google Scholar 

  40. 40.

    Dovas, A., Yoneda, A. & Couchman, J. R. PKCα-dependent activation of RhoA by syndecan-4 during focal adhesion formation. J. Cell Sci. 119, 2837–2846 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    Greene, D. K., Tumova, S., Couchman, J. R. & Woods, A. Syndecan-4 associates with α-actinin. J. Biol. Chem. 278, 7617–7623 (2003).

    CAS  Article  Google Scholar 

  42. 42.

    Lim, S. T., Longley, R. L., Couchman, J. R. & Woods, A. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha. J. Biol. Chem. 278, 13795–13802 (2003).

    CAS  Article  Google Scholar 

  43. 43.

    Roca-Cusachs, P. et al. Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. Proc. Natl Acad. Sci. USA 110, E1361–E1370 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005).

    CAS  Article  Google Scholar 

  45. 45.

    Bass, M. D. et al. Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix. J. Cell Biol. 177, 527–538 (2007).

    CAS  Article  Google Scholar 

  46. 46.

    Lachowski, D. et al. Substrate rigidity controls activation and durotaxis in pancreatic stellate cells. Sci. Rep. 7, 2506 (2017).

    Article  CAS  Google Scholar 

  47. 47.

    Várnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to Myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 143, 501–510 (1998).

    Article  Google Scholar 

  48. 48.

    Edlund, M., Lotano, M. A. & Otey, C. A. Dynamics of α-actinin in focal adhesions and stress fibers visualized with α-actinin-green fluorescent protein. Cell Motil. 48, 190–200 (2001).

    CAS  Article  Google Scholar 

  49. 49.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    CAS  Article  Google Scholar 

  51. 51.

    Javanainen, M. Universal method for embedding proteins into complex lipid bilayers for molecular dynamics simulations. J. Chem. Theory Comput. 10, 2577–2582 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Van Der Spoel, D. et al. GROMACS: fast, flexible and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  CAS  Google Scholar 

  53. 53.

    Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    CAS  Article  Google Scholar 

  54. 54.

    Jorgensen, W. L. & Madura, J. D. Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water. J. Am. Chem. Soc. 105, 1407–1413 (1983).

    CAS  Article  Google Scholar 

  55. 55.

    Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    CAS  Article  Google Scholar 

  56. 56.

    Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    CAS  Article  Google Scholar 

  57. 57.

    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  58. 58.

    Parrinello, M. & Rahman, A. Polymorphic transitions in single-crystals—a new molecular-dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    CAS  Article  Google Scholar 

Download references


This work was supported by the European Research Council (ERC grant no. 282051), the Biotechnology and Biological Sciences Research Council (BBSRC grant no. BB/N018532/1) and the Academy of Finland (grant no. 290506). V.V.M. was supported by an EDUFI (former CIMO) postdoctoral fellowship and Academy of Finland funding for Postdoctoral Researcher (grant no. 323021). We thank M. Morgan (University of Liverpool) for providing MEF cell lines, J. Couchman (University of Copenhagen) for providing syndecan-4 cytoplasmic truncation plasmids (C2 and V domains), J. Qin (Cleveland Clinic) for the kindlin-2-GFP plasmids, C. Wu (University of Pittsburgh) for the kindlin-2 K390A plasmid and F. Di Maggio for help in implementing the initial work with PSCs. We acknowledge CSC–IT Center for Science, Finland for computational resources. We are also grateful to all CMBL members for help and advice throughout this work.

Author information




A.C. and A.J.R. conducted magnetic tweezers experiments. A.C. and S.D.T. conducted permanent magnet experiments. S.D.T. and A.C. performed and analysed experiments with MEF cells. A.C., E.C., D.L. and S.D.T. performed and analysed experiments with PSCs. S.D.T. carried out transfections and western blots, and immunofluorescent staining experiments supervised by D.A.L. E.C. carried out RhoA activity experiments. V.V.M. performed MD and SMD experiments supervised by V.P.H. and T.R. D.L. performed IF experiments and data analysis. A.C., S.D.T. and A.E.d.R.H. designed the studies and wrote and prepared the manuscript with significant input from V.P.H. All authors commented on the manuscript.

Corresponding authors

Correspondence to Stephen D. Thorpe or Vesa P. Hytönen or Armando E. del Río Hernández.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, discussion, methods and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chronopoulos, A., Thorpe, S.D., Cortes, E. et al. Syndecan-4 tunes cell mechanics by activating the kindlin-integrin-RhoA pathway. Nat. Mater. 19, 669–678 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing