Multi-messenger nanoprobes of hidden magnetism in a strained manganite

Abstract

The ground-state properties of correlated electron systems can be extraordinarily sensitive to external stimuli, offering abundant platforms for functional materials. Using the multi-messenger combination of atomic force microscopy, cryogenic scanning near-field optical microscopy, magnetic force microscopy and ultrafast laser excitation, we demonstrate both ‘writing’ and ‘erasing’ of a metastable ferromagnetic metal phase in strained films of La2/3Ca1/3MnO3 (LCMO) with nanometre-resolved finesse. By tracking both optical conductivity and magnetism at the nanoscale, we reveal how strain-coupling underlies the dynamic growth, spontaneous nanotexture and first-order melting transition of this hidden photoinduced metal. Our first-principles calculations reveal that epitaxially engineered Jahn–Teller distortion can stabilize nearly degenerate antiferromagnetic insulator and ferromagnetic metal phases. We propose a Ginzburg–Landau description to rationalize the co-active interplay of strain, lattice distortions and magnetism nano-resolved here in strained LCMO, thus guiding future functional engineering of epitaxial oxides into the regime of phase-programmable materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Nano-imaging of photoinduced ferromagnetic metal in epitaxial LCMO.
Fig. 2: Strain-mediated suppression of hidden ferromagnetism.
Fig. 3: Co-active growth of photoinduced ferromagnetic metallic domains.
Fig. 4: Thermal melting of the photoinduced ferromagnetic metal.
Fig. 5: Nanoscale erasure of photoinduced metallicity.

Data availability

Data presented in this work will be made available upon request.

References

  1. 1.

    Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

  2. 2.

    Averitt, R. D. & Taylor, A. J. Ultrafast optical and far-infrared quasiparticle dyanmics in correlated electron materials. J. Phys. Condens. Matter 14, R1357–R1390 (2002).

  3. 3.

    Zhang, J. & Averitt, R. D. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44, 19–43 (2014).

  4. 4.

    Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

  5. 5.

    Nagaosa, N. & Tokura, Y. Orbital physics in transition-metal oxides. Science 288, 462 (2000).

  6. 6.

    Burgy, J., Moreo, A. & Dagotto, E. Relevance of cooperative lattice effects and stress fields in phase-separation theories for CMR manganites. Phys. Rev. Lett. 92, 97202 (2004).

  7. 7.

    Ahn, K. H., Lookman, T. & Bishop, A. R. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004).

  8. 8.

    Ichikawa, H. et al. Transient photoinduced ‘hidden’ phase in a manganite. Nat. Mater. 10, 101–105 (2011).

  9. 9.

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

  10. 10.

    Pagliari, L. et al. Strain heterogeneity and magnetoelastic behaviour of nanocrystalline half-doped La, Ca manganite, La0.5Ca0.5MnO3. J. Phys. Condens. Matter 26, 435303 (2014).

  11. 11.

    Li, X. G. et al. Jahn–Teller effect and stability of the charge-ordered state in La1 − xCaxMnO3 (0.5 ≤ x ≤ 0.9) manganites. Europhys. Lett. 60, 670–676 (2002).

  12. 12.

    Salje, E. K. H. Ferroelastic materials. Annu. Rev. Mater. Res. 42, 265–283 (2012).

  13. 13.

    Zhang, J. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

  14. 14.

    Huang, Z. et al. Tuning the ground state of La0.67Ca0.33MnO3 films via coherent growth on orthorhombic NdGaO3 substrates with different orientations. Phys. Rev. B 86, 1–8 (2012).

  15. 15.

    Zhang, L., Israel, C., Biswas, A., Greene, R. L. & De Lozanne, A. Direct observation of percolation in a manganite thin film. Science 298, 805–807 (2002).

  16. 16.

    Lai, K. et al. Mesoscopic percolating resistance network in a strained manganite thin film. Science 329, 190–193 (2010).

  17. 17.

    Uehara, M., Mori, S., Chen, C. H. & Cheong, S. W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).

  18. 18.

    Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, 2002).

  19. 19.

    Wu, W. et al. Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet. Nat. Mater. 5, 881–886 (2006).

  20. 20.

    Zhou, H. et al. Evolution and control of the phase competition morphology in a manganite film. Nat. Commun. 6, 8980 (2015).

  21. 21.

    Huang, Z. et al. Phase evolution and the multiple metal–insulator transitions in epitaxially shear-strained La0.67Ca0.33MnO3/NdGaO3(001) films. J. Appl. Phys. 108, 83912 (2010).

  22. 22.

    Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997).

  23. 23.

    Carpenter, M. A. & Howard, C. J. Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn–Teller transitions in ABX 3 perovskites. II. Application. Acta Crystallogr. B 65, 147–159 (2009).

  24. 24.

    Zhou et al. Effect of tolerance factor and local distortion on magnetic properties of the perovskite manganites. Appl. Phys. Lett. 75, 1146 (1999).

  25. 25.

    Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006).

  26. 26.

    Hwang, H. Y., Cheong, S. W., Radaelli, P. G., Marezio, M. & Batlogg, B. Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914–917 (1995).

  27. 27.

    Milward, G. C., Calderón, M. J. & Littlewood, P. B. Electronically soft phases in manganites. Nature 433, 607–610 (2005).

  28. 28.

    McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2017).

  29. 29.

    Liu, M. K. et al. Anisotropic electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett. 111, 096602 (2013).

  30. 30.

    Furukawa, N. Temperature dependence of conductivity in (La, Sr)MnO3. J. Phys. Soc. Jpn 64, 3164–3167 (1995).

  31. 31.

    Millis, A. J., Darling, T. & Migliori, A. Quantifying strain dependence in ‘colossal’ magnetoresistance manganites. J. Appl. Phys. 83, 1588–1591 (1998).

  32. 32.

    Rao, R. A. et al. Three-dimensional strain states and crystallographic domain structures of epitaxial colossal magnetoresistive La0.8Ca0.2MnO3 thin films. Appl. Phys. Lett. 73, 3294–3296 (1998).

  33. 33.

    Millis, A. J. Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147–150 (1998).

  34. 34.

    Post, K. W. et al. Coexisting first- and second-order electronic phase transitions in a correlated oxide. Nat. Phys. 14, 1056–1061 (2018).

  35. 35.

    Salje, E. Phase transitions in ferroelastic and co-elastic crystals. Ferroelectrics 104, 111–120 (1990).

  36. 36.

    Tselev, A. et al. Interplay between ferroelastic and metal–insulator phase transitions in strained quasi-two-dimensional VO2 nanoplatelets. Nano Lett. 10, 2003–2011 (2010).

  37. 37.

    Xiong, C. M., Sun, J. R. & Shen, B. G. Dependence of magnetic anisotropy of the La0.67Ca0.33MnO3 films on substrate and film thickness. Solid State Commun. 134, 465–469 (2005).

  38. 38.

    Liu, M. et al. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging. Phys. Rev. B 91, 245155 (2015).

  39. 39.

    Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

  40. 40.

    Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

  41. 41.

    Mitrano, M. et al. Possible light-induced superconductivity in K3 C60 at high temperature. Nature 530, 461–464 (2016).

  42. 42.

    Yang, H. U., Hebestreit, E., Josberger, E. E. & Raschke, M. B. A cryogenic scattering-type scanning near-field optical microscope. Rev. Sci. Instrum. 84, 23701–101124 (2013).

  43. 43.

    Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750 (2007).

  44. 44.

    Atkin, J. M., Berweger, S., Jones, A. C. & Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases and domains in complex solids. Adv. Phys. 61, 745–842 (2012).

  45. 45.

    Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Course of Theoretical Physics Vol. 7, Pergamon Press, 1970).

  46. 46.

    Hartmann, U. Magnetic force microscopy. Annu. Rev. Mater. Sci. 29, 53–87 (1999).

  47. 47.

    Alnaes, M. S. et al. The FEniCS Project Version 1.5. Arch. Numer. Softw. 3, 9–23 (2015).

  48. 48.

    Eshelby, J. D. The continuum theory of lattice defects. Solid State Phys. Adv. Res. Appl. 3, 79–144 (1956).

  49. 49.

    Hertz, H. Ueber die Beruehrung fester elastischer Koerper. J. für die Reine und Angew. Math. 91, 156–171 (1882).

Download references

Acknowledgements

Multi-messenger nano-imaging capabilities were developed with support from Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award no. DE-SC0019443. Research on the phase transition in correlated oxides was supported by the US DOE-BES award no. DE-SC-0012375. F.J. and W.W. acknowledge support from the NSF of China (grant no. 11974326), the National key R&D Program of China (grant no. 2016YFA0401003) and Hefei Science Center CAS.

Author information

A.S.M., J.Z., R.D.A. and D.N.B. conceived the experiments. F.J., X.G.Z. and W.W. provided the samples used in the experiments. G.Z. and K.W.P. provided instrumental support. A.S.M. and J.Z. carried out the nano-imaging and supplementary experiments. M.Q.G., A.J.M. and J.M.R. provided theoretical calculations and support with data analysis. A.S.M. and J.Z. wrote the manuscript with input from all coauthors.

Correspondence to A. S. McLeod or Jingdi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1–3, notes 1–11 and refs. 1–20.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McLeod, A.S., Zhang, J., Gu, M.Q. et al. Multi-messenger nanoprobes of hidden magnetism in a strained manganite. Nat. Mater. (2019). https://doi.org/10.1038/s41563-019-0533-y

Download citation