Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tunable quadruple-well ferroelectric van der Waals crystals

Abstract

The family of layered thio- and seleno-phosphates has gained attention as potential control dielectrics for the rapidly growing family of two-dimensional and quasi-two-dimensional electronic materials. Here we report a combination of density functional theory calculations, quantum molecular dynamics simulations and variable-temperature, -pressure and -bias piezoresponse force microscopy data to predict and verify the existence of an unusual ferroelectric property—a uniaxial quadruple potential well for Cu displacements—enabled by the van der Waals gap in copper indium thiophosphate (CuInP2S6). The calculated potential energy landscape for Cu displacements is strongly influenced by strain, accounting for the origin of the negative piezoelectric coefficient and rendering CuInP2S6 a rare example of a uniaxial multi-well ferroelectric. Experimental data verify the coexistence of four polarization states and explore the temperature-, pressure- and bias-dependent piezoelectric and ferroelectric properties, which are supported by bias-dependent molecular dynamics simulations. These phenomena offer new opportunities for both fundamental studies and applications in data storage and electronics.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Quadruple well for CIPS and piezoelectric constant for polarization states obtained by DFT.
Fig. 2: Piezoelectric constant experimentally quantified from PFM.
Fig. 3: Temperature-dependent polarization-state distribution as measured by PFM.
Fig. 4: Bias-induced polarization switching.

Data availability

The experimental and theoretical data presented in this work are available from the corresponding authors upon reasonable request.

References

  1. Susner, M. A., Chyasnavichyus, M., McGuire, M. A., Ganesh, P. & Maksymovych, P. Metal thio- and selenophosphates as multifunctional van der Waals layered materials. Adv. Mater. 29, 1602852 (2017).

    Article  CAS  Google Scholar 

  2. Park, J. G. Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? J. Phys. Condens. Matter 28, 301001 (2016).

    Article  CAS  Google Scholar 

  3. Du, K. Z. et al. Weak van der Waals stacking, wide-tange band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).

    CAS  Article  Google Scholar 

  4. Maisonneuve, V. et al. Ionic conductivity in ferroic CuInP2S6 and CuCrP2S6. Ferroelectrics 196, 577–580 (1997).

    Article  Google Scholar 

  5. Balke, N. et al. Locally controlled Cu-ion transport in layered ferroelectric CuInP2S6. ACS Appl. Mater. Interfaces 10, 27188–27194 (2018).

    CAS  Article  Google Scholar 

  6. Dietrich, C. et al. Local structural investigations, defect formation, and ionic conductivity of the lithium ionic conductor Li4P2S6. Chem. Mater. 28, 8764–8773 (2016).

    CAS  Article  Google Scholar 

  7. Morozovska, A. N., Eliseev, E. A., Morozovsky, N. V. & Kalinin, S. V. Ferroionic states in ferroelectric thin films. Phys. Rev. B 95, 195413 (2017).

    Article  Google Scholar 

  8. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    CAS  Article  Google Scholar 

  9. Maisonneuve, V., Cajipe, V., Simon, A., Von Der Muhll, R. & Ravez, J. Ferrielectric ordering in lamellar CuInP2S6. Phys. Rev. B 56, 10860–10868 (1997).

    CAS  Article  Google Scholar 

  10. Simon, A., Ravez, J., Maisonneuve, V., Payen, C. & Cajipe, V. B. Paraelectric ferroelectric transition in the lamellar thiophosphate CuInP2S6. Chem. Mater. 6, 1575–1580 (1994).

    CAS  Article  Google Scholar 

  11. Bourdon, X., Grimmer, A. R. & Cajipe, V. B. P-31 MAS NMR study of the ferrielectric-paraelectric transition in layered CuInP2S6. Chem. Mater. 11, 2680–2686 (1999).

    CAS  Article  Google Scholar 

  12. Si, M. et al. Room-temperature electrocaloric effect in layered ferroelectric CuInP2S6 for solid-state refrigeration. ACS Nano 13, 8760–8765 (2019).

    CAS  Article  Google Scholar 

  13. Neumayer, S. M. et al. Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric. Phys. Rev. Mater. 3, 024401 (2019).

    CAS  Article  Google Scholar 

  14. You, L. et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).

    Article  Google Scholar 

  15. Katsouras, I. et al. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 15, 78–84 (2016).

    CAS  Article  Google Scholar 

  16. Liu, S. & Cohen, R. E. Origin of negative longitudinal piezoelectric effect. Phys. Rev. Lett. 119, 207601 (2017).

    Article  Google Scholar 

  17. Bernardini, F., Fiorentini, V. & Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III–V nitrides. Phys. Rev. B 56, 10024–10027 (1997).

    Article  Google Scholar 

  18. Shimada, K., Sota, T., Suzuki, K. & Okumura, H. First-principles study on piezoelectric constants in strained BN, AlN, and GaN. Jpn. J. Appl. Phys. 37, L1421–L1423 (1998).

    CAS  Article  Google Scholar 

  19. Ondrejkovic, P., Marton, P., Guennou, M., Setter, N. & Hlinka, J. Piezoelectric properties of twinned ferroelectric perovskites with head-to-head and tail-to-tail domain walls. Phys. Rev. B 88, 024114 (2013).

    Article  CAS  Google Scholar 

  20. Song, W. S., Fei, R. X. & Yang, L. Off-plane polarization ordering in metal chalcogen diphosphates from bulk to monolayer. Phys. Rev. B 96, 235420 (2017).

    Article  Google Scholar 

  21. Stengel, M. & Iniguez, J. Electrical phase diagram of bulk BiFeO3. Phys. Rev. B 92, 235148 (2015).

    Article  CAS  Google Scholar 

  22. Sharma, P. et al. Morphotropic phase elasticity of strained BiFeO3. Adv. Mater. Interfaces 3, 1600033 (2016).

    Article  CAS  Google Scholar 

  23. Liu, K. et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano. Lett. 14, 5097–5103 (2014).

    CAS  Article  Google Scholar 

  24. Woo, S., Park, H. C. & Son, Y. W. Poisson’s ratio in layered two-dimensional crystals. Phys. Rev. B 93, 075420 (2016).

    Article  CAS  Google Scholar 

  25. Lines M. E. & Glass A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 1977).

  26. Gruverman, A., Auciello, O. & Tokumoto, H. Scanning force microscopy for the study of domain structure in ferroelectric thin films. J. Vac. Sci. Technol. B. 14, 602–605 (1996).

    Article  Google Scholar 

  27. Jesse, S., Baddorf, A. P. & Kalinin, S. V. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).

    Article  CAS  Google Scholar 

  28. Eliseev, E. A., Kalinin, S. V., Jesse, S., Bravina, S. L. & Morozovska, A. N. Electromechanical detection in scanning probe microscopy: tip models and materials contrast. J. Appl. Phys. 102, 014109 (2007).

    Article  CAS  Google Scholar 

  29. Setter, N. et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).

    Article  CAS  Google Scholar 

  30. Jungk, T., Hoffmann, A. & Soergel, E. Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy. Appl. Phys. Lett. 89, 163507(1)–163507(3) (2006).

    Google Scholar 

  31. Balke, N. et al. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. Nanotechnology 27, 425707 (2016).

    Article  Google Scholar 

  32. Susner, M. A. et al. High-Tc layered ferrielectric crystals by coherent spinodal decomposition. ACS Nano 9, 12365–12373 (2015).

    CAS  Article  Google Scholar 

  33. Zavaliche, F. et al. Multiferroic BiFeO3 films: domain structure and polarization dynamics. Phase Transit. 79, 991–1017 (2006).

    CAS  Article  Google Scholar 

  34. Baudry, L., Lukyanchuk, I. & Vinokur, V. M. Ferroelectric symmetry-protected multibit memory cell. Sci. Rep. 7, 42196 (2017).

    CAS  Article  Google Scholar 

  35. Dieguez, O. & Vanderbilt, D. Theoretical study of ferroelectric potassium nitrate. Phys. Rev. B 76, 134101 (2007).

    Article  CAS  Google Scholar 

  36. Yevych, R. M. & Vysochanskii, Y. M. Triple well potential and macroscopic properties of Sn2P2S6 ferroelectrics near phase transition. Ferroelectrics 412, 38–44 (2011).

    CAS  Article  Google Scholar 

  37. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

  38. Maisonneuve, V., Evain, M., Payen, C., Cajipe, V. B. & Molinie, P. Room-temperature crystal-structure of the layered phase Cu(I)In(III)P2S6. J. Alloy. Compd 218, 157–164 (1995).

    CAS  Article  Google Scholar 

  39. Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. B 58, 364–369 (2002).

    Article  CAS  Google Scholar 

  40. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  CAS  Google Scholar 

  41. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  Article  Google Scholar 

  42. Gonze, X. et al. First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002).

    Article  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  45. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  46. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  Article  Google Scholar 

  47. Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990).

    CAS  Article  Google Scholar 

  48. Ramer, N. J. & Rappe, A. M. Designed nonlocal pseudopotentials for enhanced transferability. Phys. Rev. B 59, 12471–12478 (1999).

    CAS  Article  Google Scholar 

  49. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone izntegrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  50. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

  51. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

  52. Neugebauer, J. & Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).

    CAS  Article  Google Scholar 

  53. Makov, G. & Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The experimental work, including part of the data analysis and interpretation, was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Theory was supported by the US Department of Energy (grant no. DE-FG02-09ER46554) and by the McMinn Endowment at Vanderbilt University. The experiments were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility that also provided support with data collection and interpretation. Partial support for sample synthesis, experiments and theory was provided by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory. Calculations were performed at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. Manuscript preparation was partially funded by the Air Force Research Laboratory under an Air Force Office of Scientific Research grant (LRIR grant no. 14RQ08COR) and a grant from the National Research Council.

Author information

Authors and Affiliations

Authors

Contributions

J.A.B., L.T., A.O. and S.T.P. performed the DFT calculations. S.M.N., M.C., P.M. and N.B. designed and performed the PFM experiments. M.A.S. and M.A.M. synthesized the samples. S.J. provided data acquisition support. P.G. and S.V.K. provided discussion on theoretical and experimental results. All authors contributed to manuscript writing.

Corresponding authors

Correspondence to Sokrates T. Pantelides, Petro Maksymovych or Nina Balke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Pressure-induced polarization switching measured by PFM.

(a.) Pressure-dependent PFM measurements from a 10x10 μm2 area (Supplementary Fig. 6). (b.) Histograms of measured piezoelectric response of CIPS only. (c.) Pressure-dependent piezoelectric constant extracted for four distinct states and theoretical piezoelectric constant from theory for comparison. Data points are the position of the histogram peaks for each phase and error bars correspond to the peak widths. The d-value is constant or decreasing for LP and increases for HP. The +HP state (light blue) transforms into the -HP state (yellow) indicating a pressure-induced switching event. All changes are reversible. Response on the IPS phase changes little with contact force (see also Supplementary Fig. 7b).

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brehm, J.A., Neumayer, S.M., Tao, L. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 19, 43–48 (2020). https://doi.org/10.1038/s41563-019-0532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0532-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing