Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrasoft slip-mediated bending in few-layer graphene

An Author Correction to this article was published on 06 December 2019

This article has been updated


Continuum scaling laws often break down when materials approach atomic length scales, reflecting changes in their underlying physics and the opportunities to access unconventional properties. These continuum limits are evident in two-dimensional materials, where there is no consensus on their bending stiffnesses or how they scale with thickness. Through combined computational and electron microscopy experiments, we measure the bending stiffness of graphene, obtaining 1.2–1.7 eV for a monolayer. Moreover, we find that the bending stiffness of few-layer graphene decreases sharply as a function of bending angle, tuning by almost 400% for trilayer graphene. This softening results from shear, slip and the onset of superlubricity between the atomic layers and corresponds with a gradual change in scaling power from cubic to linear. Our results provide a unified model for bending in two-dimensional materials and show that their multilayers can be orders of magnitude softer than previously thought, among the most flexible electronic materials currently known.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Fabrication and STEM imaging of curved FLG on hBN steps.
Fig. 2: Measurement of bending stiffness from STEM images.
Fig. 3: DFT calculations of bending stiffness in FLG and comparison with experiment.
Fig. 4: Atomic-scale bending mechanisms in FLG.

Data availability

The data and findings of this study are available from the corresponding authors on reasonable request.

Change history

  • 06 December 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    CAS  Google Scholar 

  2. 2.

    Shen, Y. & Wu, H. Interlayer shear effect on multilayer graphene subjected to bending. Appl. Phys. Lett. 100, 101904–101909 (2012).

    Google Scholar 

  3. 3.

    Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 17, 894–899 (2018).

    CAS  Google Scholar 

  4. 4.

    Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    CAS  Google Scholar 

  5. 5.

    Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000).

    CAS  Google Scholar 

  6. 6.

    Yakobson, B. I., Samsonidze, G. & Samsonidze, G. G. Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon 38, 1675–1680 (2000).

    CAS  Google Scholar 

  7. 7.

    Zang, J. et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013).

    CAS  Google Scholar 

  8. 8.

    Kang, P., Wang, M. C., Knapp, P. M. & Nam, S. Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 28, 4639–4645 (2016).

    CAS  Google Scholar 

  9. 9.

    Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

    CAS  Google Scholar 

  10. 10.

    Lee, W. et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 9, 1417 (2018).

    Google Scholar 

  11. 11.

    Miskin, M. Z. et al. Graphene-based bimorphs for micron-sized, autonomous origami machines. Proc. Natl Acad. Sci. USA 115, 466–470 (2018).

    CAS  Google Scholar 

  12. 12.

    Chen, X., Yi, C. & Ke, C. Bending stiffness and interlayer shear modulus of few-layer graphene. Appl. Phys. Lett. 106, 101907 (2015).

    Google Scholar 

  13. 13.

    Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 4, 562–566 (2009).

    CAS  Google Scholar 

  14. 14.

    Brennan, C. J., Nguyen, J., Yu, E. T. & Lu, N. Interface adhesion between 2D materials and elastomers measured by buckle delaminations. Adv. Mater. Interfaces 2, 1500176 (2015).

    Google Scholar 

  15. 15.

    Jiang, T., Huang, R. & Zhu, Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater. 24, 396–402 (2013).

    Google Scholar 

  16. 16.

    Akinwande, D. et al. A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017).

    Google Scholar 

  17. 17.

    Zhang, D. B., Akatyeva, E. & Dumitrică, T. Bending ultrathin graphene at the margins of continuum mechanics. Phys. Rev. Lett. 106, 3–6 (2011).

    Google Scholar 

  18. 18.

    Koskinen, P. & Kit, O. O. Approximate modeling of spherical membranes. Phys. Rev. B 82, 1–5 (2010).

    Google Scholar 

  19. 19.

    Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    CAS  Google Scholar 

  20. 20.

    Lopez-Polin, G. et al. Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 11, 26–31 (2014).

    Google Scholar 

  21. 21.

    Tapasztó, L. et al. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat. Phys. 8, 739–742 (2012).

    Google Scholar 

  22. 22.

    Nikiforov, I., Tang, D. M., Wei, X., Dumitrică, T. & Golberg, D. Nanoscale bending of multilayered boron nitride and graphene ribbons: experiment and objective molecular dynamics calculations. Phys. Rev. Lett. 109, 1–5 (2012).

    Google Scholar 

  23. 23.

    Yang, Z. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 8, 15815 (2017).

    Google Scholar 

  24. 24.

    Rooney, A. P. et al. Anomalous twin boundaries in two dimensional materials. Nat. Commun. 9, 3597 (2018).

    CAS  Google Scholar 

  25. 25.

    Poot, M. & van der Zant, H. S. J. Nanomechanical properties of few-layer graphene membranes. Appl. Phys. Lett. 92, 063111 (2008).

    Google Scholar 

  26. 26.

    Booth, T. J. et al. Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 8, 2442–2446 (2008).

    CAS  Google Scholar 

  27. 27.

    Lindahl, N. et al. Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes. Nano Lett. 12, 3526–3531 (2012).

    CAS  Google Scholar 

  28. 28.

    Zhao, J. et al. Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping. Nat. Commun. 6, 8935 (2015).

    CAS  Google Scholar 

  29. 29.

    Kvashnin, D. G. & Sorokin, P. B. Effect of ultrahigh stiffness of defective graphene from atomistic point of view. J. Phys. Chem. Lett. 6, 2384–2387 (2015).

    CAS  Google Scholar 

  30. 30.

    Ertekin, E., Chrzan, D. C. & Daw, M. S. Topological description of the Stone–Wales defect formation energy in carbon nanotubes and graphene. Phys. Rev. B 79, 155421 (2009).

    Google Scholar 

  31. 31.

    Guo, Y., Qiu, J. & Guo, W. Mechanical and electronic coupling in few-layer graphene and hBN wrinkles: a first-principles study. Nanotechnology 27, 505702 (2016).

    Google Scholar 

  32. 32.

    Wei, Y., Wang, B., Wu, J., Yang, R. & Dunn, M. L. Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13, 26–30 (2013).

    CAS  Google Scholar 

  33. 33.

    Iijima, S., Brabec, C., Maiti, A. & Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996).

    CAS  Google Scholar 

  34. 34.

    Warner, J. H. et al. Dislocation-driven deformations in graphene. Science 337, 209–212 (2012).

    CAS  Google Scholar 

  35. 35.

    Kim, K. et al. Ripping graphene: preferred directions. Nano Lett. 12, 293–297 (2012).

    CAS  Google Scholar 

  36. 36.

    Casillas, G., Liao, Y., Jose-Yacaman, M. & Marks, L. D. Monolayer transfer layers during sliding at the atomic scale. Tribol. Lett. 59, 45 (2015).

    Google Scholar 

  37. 37.

    Yakobson, B. I., Brabec, C. J. & Bernolc, J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996).

    CAS  Google Scholar 

  38. 38.

    Ru, C. Q. Effective bending stiffness of carbon nanotubes. Phys. Rev. B 62, 9973–9976 (2000).

    CAS  Google Scholar 

  39. 39.

    Sanchez, D. A. et al. Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc. Natl Acad. Sci. USA 115, 7884–7889 (2018).

    CAS  Google Scholar 

  40. 40.

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    CAS  Google Scholar 

  41. 41.

    Nicklow, R., Wakabayashi, N. & Smith, H. G. Lattice dynamics of pyrolytic graphite. Phys. Rev. B 5, 4951–4962 (1972).

    Google Scholar 

  42. 42.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964).

    Google Scholar 

  43. 43.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965).

    Google Scholar 

  44. 44.

    Nye, J. F. Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953).

    CAS  Google Scholar 

  45. 45.

    Shinjo, K. & Hirano, M. Dynamics of friction: superlubric state. Surf. Sci. 293, 473–478 (1993).

    Google Scholar 

  46. 46.

    Sangid, M. D., Ezaz, T., Sehitoglu, H. & Robertson, I. M. Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 59, 283–296 (2011).

    CAS  Google Scholar 

  47. 47.

    Son, J. et al. Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures. Nat. Commun. 9, 3988 (2018).

    Google Scholar 

  48. 48.

    Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    CAS  Google Scholar 

  49. 49.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  50. 50.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  51. 51.

    Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Google Scholar 

  52. 52.

    Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002).

    CAS  Google Scholar 

  53. 53.

    Kolmogorov, A. N. & Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005).

    Google Scholar 

  54. 54.

    Ouyang, W., Mandelli, D., Urbakh, M. & Hod, O. Nanoserpents: graphene nanoribbon motion on two-dimensional hexagonal materials. Nano Lett. 18, 6009–6016 (2018).

    CAS  Google Scholar 

  55. 55.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  56. 56.

    Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Google Scholar 

Download references


This work was supported in full by NSF-MRSEC award no. DMR-1720633. The work was carried out in part in the Micro and Nano Technology Laboratory and the Materials Research Laboratory Central Facilities at the University of Illinois, where electron microscopy support was provided by J. Mabon, C. Chen and H. Zhou. The authors acknowledge the use of facilities and instrumentation supported by the NSF through the University of Illinois Materials Research Science and Engineering Center (DMR-1720633). Computational resources were provided by the Blue Waters sustained petascale computing facilities and the Illinois Campus Computing Cluster. The authors acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (JPMJCR15F3), JST. The authors acknowledge helpful discussions with J. Krogstad, H. Johnson, S. Kim and B. Janicek. The authors also acknowledge B. Janicek for the design of Fig. 1a.

Author information




Under supervision by P.Y.H., E.H. performed TEM sample preparation, electron microscopy imaging and data analysis. Under supervision by P.Y.H. and A.M.v.d.Z., E.H. and J.Y. developed mechanics modelling and analysis. Under supervision by J.S. and A.M.v.d.Z., J.Y. and D.A.K. performed sample preparation and 2D heterostructure fabrication. Under supervision by E.E., J.Y. performed DFT calculations. Under supervision by E.E., E.A. performed simulations using classical force fields. K.W. and T.T. prepared high-quality hBN. All authors read and contributed to the manuscript.

Corresponding authors

Correspondence to Pinshane Y. Huang or Arend M. van der Zande.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Methods and references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, E., Yu, J., Annevelink, E. et al. Ultrasoft slip-mediated bending in few-layer graphene. Nat. Mater. 19, 305–309 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing