Electrical switching in a magnetically intercalated transition metal dichalcogenide

An Author Correction to this article was published on 23 July 2020

A Publisher Correction to this article was published on 13 November 2019

This article has been updated


Advances in controlling the correlated behaviour of transition metal dichalcogenides have opened a new frontier of many-body physics in two dimensions. A field where these materials have yet to make a deep impact is antiferromagnetic spintronics—a relatively new research direction promising technologies with fast switching times, insensitivity to magnetic perturbations and reduced cross-talk1,2,3. Here, we present measurements on the intercalated transition metal dichalcogenide Fe1/3NbS2 that exhibits antiferromagnetic ordering below 42 K (refs. 4,5). We find that remarkably low current densities of the order of 104 A cm−2 can reorient the magnetic order, which can be detected through changes in the sample resistance, demonstrating its use as an electronically accessible antiferromagnetic switch. Fe1/3NbS2 is part of a larger family of magnetically intercalated transition metal dichalcogenides, some of which may exhibit switching at room temperature, forming a platform from which to build tuneable antiferromagnetic spintronic devices6,7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Electrical switching of Fe1/3NbS2.
Fig. 2: Temperature and field dependence.
Fig. 3: Geometry dependence of the switching and correlation to AMR.
Fig. 4: Dependence on current density and duration.

Data availability

The datasets generated by the present study are available from the corresponding author upon request.

Change history

  • 23 July 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 13 November 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Gomonay, O., Jungwirth, T. & Sinova, J. Concepts of antiferromagnetic spintronics. Phys. Stat. Solidi Rapid Res. Lett. 11, 1700022 (2017).

    Article  Google Scholar 

  2. 2.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Van Laar, B., Rietveld, H. M. & Ijdo, D. J. W. Magnetic and crystallographic structures of MexNbS2 and MexTaS2. J. Solid State Chem. 3, 154–160 (1971).

    Article  Google Scholar 

  5. 5.

    Gorochov, O. et al. Transport properties, magnetic susceptibility and Mössbauer spectroscopy of Fe 0.25 NbS 2 and Fe 0.33 NbS 2. Philos. Mag. B. 43, 621–634 (1981).

    CAS  Article  Google Scholar 

  6. 6.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  8. 8.

    Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

    Article  Google Scholar 

  9. 9.

    Garello, K. et al. Ultrafast magnetization switching by spin-orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    Article  Google Scholar 

  10. 10.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    Article  Google Scholar 

  12. 12.

    Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).

    Article  Google Scholar 

  14. 14.

    Friend, R. H., Beal, A. R. & Yoffe, A. D. Electrical and magnetic properties of some first row transition metal intercalates of niobium disulphide. Philos. Mag. A. 35, 1269–1287 (1977).

    CAS  Article  Google Scholar 

  15. 15.

    Parkin, S. S. P. & Friend, R. H. 3 d transition-metal intercalates of the niobium and tantalum dichalcogenides. I. Magnetic properties. Philos. Mag. B. 41, 65–93 (1980).

    CAS  Article  Google Scholar 

  16. 16.

    Moll, P. J. W. Focused ion beam microstructuring of quantum matter. Annu. Rev. Condens. Matter Phys. 9, 147–162 (2018).

    Article  Google Scholar 

  17. 17.

    McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3D alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    Article  Google Scholar 

  18. 18.

    Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Seabra, L., Momoi, T., Sindzingre, P. & Shannon, N. Phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in an applied magnetic field. Phys. Rev. B. 84, 214418 (2011).

    Article  Google Scholar 

  21. 21.

    Togawa, Y. et al. Chiral magnetic soliton lattice on a chiral helimagnet. Phys. Rev. Lett. 108, 107202 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Doyle, S. et al. Tunable giant exchange bias in an intercalated transition metal dichalcogenide. Preprint at https://arxiv.org/abs/1904.05872 (2019).

  23. 23.

    Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Silov, A. Y. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Gomonay, H. V. & Loktev, V. M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B. 81, 144427 (2010).

    Article  Google Scholar 

  29. 29.

    Železný, J. et al. Relativistic néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    Article  Google Scholar 

  30. 30.

    Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    CAS  Article  Google Scholar 

Download references


This work was supported as part of the Center for Novel Pathways to Quantum Coherence in Materials, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences. J.G.A. and N.L.N. received support from the Gordon and Betty Moore Foundation’s EPiQS Initiative (grant no. GBMF4374). J.O. received support from the Gordon and Betty Moore Foundation’s EPiQS Initiative (grant no. GBMF4537). FIB device fabrication was performed at the National Center for Electron Microscopy at the Molecular Foundry. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231).

Author information




J.G.A. and E.M. conceptualized the experiment. S.D. and C.J. performed crystal synthesis and magnetization measurements. N.L.N. fabricated FIB microstructure devices. N.L.N. and E.M. conducted transport measurements. N.L.N., E.M., J.O. and J.G.A performed data analysis. N.L.N. wrote the manuscript with input from all coauthors.

Corresponding authors

Correspondence to Nityan L. Nair or Eran Maniv or James G. Analytis.

Ethics declarations

Competing interests

A patent has been filed by Lawrence Berkeley National Laboratory on behalf of J.G.A., E.M., N.L.N., C.J. and S.D. pertaining to the use of Fe1/3NbS2 and related intercalated TMD compounds in AFM spintronic devices as described in this manuscript under US Patent Application Ser. No. 62/878,438.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Supplementary Refs. 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nair, N.L., Maniv, E., John, C. et al. Electrical switching in a magnetically intercalated transition metal dichalcogenide. Nat. Mater. 19, 153–157 (2020). https://doi.org/10.1038/s41563-019-0518-x

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing