Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electric and antiferromagnetic chiral textures at multiferroic domain walls

An Author Correction to this article was published on 12 November 2019

This article has been updated

Abstract

Chirality, a foundational concept throughout science, may arise at ferromagnetic domain walls1 and in related objects such as skyrmions2. However, chiral textures should also exist in other types of ferroic materials, such as antiferromagnets, for which theory predicts that they should move faster for lower power3, and ferroelectrics, where they should be extremely small and possess unusual topologies4,5. Here, we report the concomitant observation of antiferromagnetic and electric chiral textures at domain walls in the room-temperature ferroelectric antiferromagnet BiFeO3. Combining reciprocal and real-space characterization techniques, we reveal the presence of periodic chiral antiferromagnetic objects along the domain walls as well as a priori energetically unfavourable chiral ferroelectric domain walls. We discuss the mechanisms underlying their formation and their relevance for electrically controlled topological oxide electronics and spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Self-organized ferroelectric patterns and principle of the resonant X-ray diffraction experiments.
Fig. 2: Chiral ferroelectric structures at domain walls.
Fig. 3: Non-collinear magnetic structure in ferroelectric domains by neutron and resonant X-ray scattering.
Fig. 4: Chiral magnetic textures at ferroelectric domain walls seen in reciprocal and real spaces.

Similar content being viewed by others

Data availability

All relevant data are available from the authors and/or are included with the manuscript.

Change history

References

  1. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  2. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  Google Scholar 

  3. Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    Article  Google Scholar 

  4. Nahas, Y. et al. Discovery of stable skyrmionic state in ferroelectric nanocomposites. Nat. Commun. 6, 8542 (2015).

    Article  CAS  Google Scholar 

  5. Pereira Gonçalves, M. A., Escorihuela-Sayalero, C., Garca-Fernández, P., Junquera, J. & Íñiguez, J. Theoretical guidelines to create and tune electric skyrmion bubbles. Sci. Adv. 5, eaau7023 (2019).

    Article  Google Scholar 

  6. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  CAS  Google Scholar 

  7. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  CAS  Google Scholar 

  8. Smolenskii, G. A. & Chupis, I. E. Ferroelectromagnets. Sov. Phys. Usp. 25, 475–493 (1982).

    Article  Google Scholar 

  9. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  CAS  Google Scholar 

  10. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  11. Van Aert, S. et al. Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv. Mater. 24, 523–527 (2012).

    Article  Google Scholar 

  12. Wei, X.-K. et al. Ferroelectric translational antiphase boundaries in nonpolar materials. Nat. Commun. 5, 3031 (2014).

    Article  Google Scholar 

  13. Bhattacharya, K. The material is the machine. Science 307, 53–54 (2005).

    Article  CAS  Google Scholar 

  14. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    Article  CAS  Google Scholar 

  15. Hannon, J. P., Trammell, G. T., Blume, M. & Gibbs, D. X-ray resonance exchange scattering. Phys. Rev. Lett. 61, 1245–1248 (1988).

    Article  CAS  Google Scholar 

  16. Hill, J. P. & McMorrow, D. F. X-ray resonant exchange scattering: polarization dependence and correlation function. Acta Crystallogr. A 52, 236–244 (1996).

    Article  Google Scholar 

  17. van der Laan, G. Soft X-ray resonant magnetic scattering of magnetic nanostructures. Comptes Rendus Phys. 9, 570–584 (2008).

    Article  Google Scholar 

  18. Lovesey, S. W. & van der Laan, G. Resonant X-ray diffraction from chiral electric-polarization structures. Phys. Rev. B 98, 155410 (2018).

    Article  CAS  Google Scholar 

  19. Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl Acad. Sci. USA 115, 915–920 (2018).

    Article  CAS  Google Scholar 

  20. Cherifi-Hertel, S. et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat. Commun. 8, 15768 (2017).

    Article  CAS  Google Scholar 

  21. Waterfield Price, N. et al. Coherent magnetoelastic domains in multiferroic BiFeO3 films. Phys. Rev. Lett. 117, 177601 (2016).

    Article  CAS  Google Scholar 

  22. Lebeugle, D. et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008).

    Article  CAS  Google Scholar 

  23. Johnson, R. D. et al. X-ray imaging and multiferroic coupling of cycloidal magnetic domains in ferroelectric monodomain BiFeO3. Phys. Rev. Lett. 110, 217206 (2013).

    Article  CAS  Google Scholar 

  24. Dürr, H. A. et al. Chiral magnetic domain structures in ultrathin FePd films. Science 284, 2166–2168 (1999).

    Article  Google Scholar 

  25. Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).

    Article  Google Scholar 

  26. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article  CAS  Google Scholar 

  27. Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    Article  CAS  Google Scholar 

  28. Tranchida, J., Plimpton, S. J., Thibaudeau, P. & Thompson, A. P. Massively parallel symplectic algorithm for coupled magnetic spin dynamics and molecular dynamics. J. Comput. Phys. 372, 406–425 (2018).

    Article  Google Scholar 

  29. BrunoP., DugaevV. K. & TaillefumierM. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).

    Article  CAS  Google Scholar 

  30. Nagaosa, N. & Tokura, Y. Emergent electromagnetism in solids. Phys. Scr. T146, 014020 (2012).

    Article  Google Scholar 

  31. Jaouen, N. et al. An apparatus for temperature-dependent soft X-ray resonant magnetic scattering. J. Synchrotron Radiat. 11, 353–357 (2004).

    Article  CAS  Google Scholar 

  32. Joly, Y., Collins, S. P., Grenier, S., Tolentino, H. C. N. & De Santis, M. Birefringence and polarization rotation in resonant x-ray diffraction. Phys. Rev. B 86, 220101 (2012).

    Article  Google Scholar 

  33. Haverkort, M. W., Hollmann, N., Krug, I. P. & Tanaka, A. Symmetry analysis of magneto-optical effects: the case of X-ray diffraction and X-ray absorption at the transition metal L2,3 edge. Phys. Rev. B 82, 094403 (2010).

    Article  Google Scholar 

  34. Rondin, L. et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012).

    Article  Google Scholar 

  35. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article  CAS  Google Scholar 

  36. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  37. Tranchida, J., Plimpton, S. J., Thibaudeau, P. & Thompson, A. P. Massively parallel symplectic algorithm for coupled magnetic spin dynamics and molecular dynamics. J. Comput. Phys. 372, 406 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Popescu for assistance during the synchrotron runs, A. Barbier for discussions regarding diffraction and Y. Joly and G. van der Laan for discussions about the theoretical aspects of resonant X-ray scattering. We also acknowledge the company QNAMI for providing all-diamond scanning tips containing single NV defects. V.J. acknowledges financial support by the European Research Council (ERC-StG-2014, Imagine) and the EU Quantum Flagship project ASTERIQS (820394). The authors also acknowledge support from the French Agence Nationale de la Recherche (ANR) through projects Multidolls, PIAF and SANTA well as the ‘Programme Transversal CEA ACOSPIN and ELSA’. This work was also supported by a public grant overseen by the ANR as part of the ‘Investissement d’Avenir’ programme (LABEX NanoSaclay, ref. ANR-10-LABX-0035).

Author information

Authors and Affiliations

Authors

Contributions

J.-Y.C., M.V. and N.J. planned the REXS experiment and carried it out with C.B. V.G. and S.F. prepared the samples and carried out the PFM measurements. B.D., D.K. and P.M. carried out the neutron measurements, while W.A., I.G., A.F. and V.J. carried out the NV magnetometry. T.C., J.T. and P.T. wrote, optimized and ran the simulation code. All authors participated in scientific discussions.

Corresponding author

Correspondence to M. Viret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauleau, JY., Chirac, T., Fusil, S. et al. Electric and antiferromagnetic chiral textures at multiferroic domain walls. Nat. Mater. 19, 386–390 (2020). https://doi.org/10.1038/s41563-019-0516-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0516-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing