Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction

Article metrics

Abstract

Natural self-assembled three-dimensional photonic crystals such as blue-phase liquid crystals typically assume cubic lattice structures. Nonetheless, blue-phase liquid crystals with distinct crystal symmetries and thus band structures will be advantageous for optical applications. Here we use repetitive electrical pulses to reconfigure blue-phase liquid crystals into stable orthorhombic and tetragonal lattices. This approach, termed repetitively applied field, allows the system to relax between each pulse, gradually transforming the initial cubic lattice into various intermediate metastable states until a stable non-cubic crystal is achieved. We show that this technique is suitable for engineering non-cubic lattices with tailored photonic bandgaps, associated dispersion and band structure across the entire visible spectrum in blue-phase liquid crystals with distinct composition and initial crystal orientation. These field-free blue-phase liquid crystals exhibit large electro-optic responses and can be polymer-stabilized to have a wide operating temperature range and submillisecond response speed, which are promising properties for information display, electro-optics, nonlinear optics, microlasers and biosensing applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electrostriction dynamics of BPLCs.
Fig. 2: Electrostriction dynamics in BPI and the strategy to produce enhanced crystalline distortion.
Fig. 3: RAF electrical treatment.
Fig. 4: Optical characterizations and stability of RAF-treated BPLCs of different pitches.
Fig. 5: Control of lattice non-cubicity.
Fig. 6: Polymer-stabilized non-cubic blue phases.

Data availability

The data that support the findings of this study are available within the article and its supplementary information files and from the corresponding authors upon reasonable request.

References

  1. 1.

    Rinne, S. A., García-Santamaría, F. & Braun, P. V. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nat. Photonics 2, 52–56 (2007).

  2. 2.

    Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).

  3. 3.

    Ishizaki, K. & Noda, S. Manipulation of photons at the surface of three-dimensional photonic crystals. Nature 460, 367–370 (2009).

  4. 4.

    Hynninen, A.-P., Thijssen, J. H. J., Vermolen, E. C. M., Dijkstra, M. & van Blaaderen, A. Self-assembly route for photonic crystals with a bandgap in the visible region. Nat. Mater. 6, 202–205 (2007).

  5. 5.

    Honda, M., Seki, T. & Takeoka, Y. Dual tuning of the photonic band-gap structure in soft photonic crystals. Adv. Mater. 21, 1801–1804 (2009).

  6. 6.

    Hou, J. et al. Bio‐inspired photonic‐crystal microchip for fluorescent ultratrace detection. Angew. Chem. Int. Ed. 53, 5791–5795 (2014).

  7. 7.

    Zhao, Y., Xie, Z., Gu, H., Zhu, C. & Gu, Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 41, 3297–3317 (2012).

  8. 8.

    Lopez-Garcia, M. et al. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae. Sci. Adv. 4, eaan8917 (2018).

  9. 9.

    Kang, Y., Walish, J. J., Gorishnyy, T. & Thomas, E. L. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater. 6, 957–960 (2007).

  10. 10.

    Fang, Y. et al. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat. Commun. 6, 7416 (2015).

  11. 11.

    Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics 7, 801–805 (2013).

  12. 12.

    Chen, C.-W. et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases. Nat. Commun. 8, 727 (2017).

  13. 13.

    Tanaka, S. et al. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy. Sci. Rep. 5, 16180 (2015).

  14. 14.

    Heppke, G., Jerome, B., Kitzerow, H.-S. & Pieranski, P. Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy. J. de. Phys. 50, 2991–2998 (1989).

  15. 15.

    Lin, T.-H. et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film. Adv. Mater. 25, 5050–5054 (2013).

  16. 16.

    Martínez-González, J. A. et al. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals. Nat. Commun. 8, 15854 (2017).

  17. 17.

    Wang, M. et al. Asymmetric tunable photonic bandgaps in self‐organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity. Adv. Funct. Mater. 27, 1702261 (2017).

  18. 18.

    Cao, W., Muñoz, A., Palffy-Muhoray, P. & Taheri, B. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat. Mater. 1, 111–113 (2002).

  19. 19.

    Khoo, I. C., Hong, K. L., Zhao, S., Ma, D. & Lin, T.-H. Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties. Opt. Express 21, 4319–4328 (2013).

  20. 20.

    Lee, M.-J., Chang, C.-H. & Lee, W. Label-free protein sensing by employing blue phase liquid crystal. Biomed. Opt. Express 8, 1712–1720 (2017).

  21. 21.

    Hisakado, Y., Kikuchi, H., Nagamura, T. & Kajiyama, T. Large electro-optic kerr effect in polymer-stabilized liquid-crystalline blue phases. Adv. Mater. 17, 96–98 (2005).

  22. 22.

    Kitzerow, H.-S. The effect of electric fields on blue phases. Mol. Cryst. Liq. Cryst. 202, 51–83 (1991).

  23. 23.

    Fukuda, J. & Žumer, S. Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal. Nat. Commun. 2, 246 (2011).

  24. 24.

    Fukuda, J. & Žumer, S. Novel defect structures in a strongly confined liquid-crystalline blue phase. Phys. Rev. Lett. 104, 017801 (2010).

  25. 25.

    Nych, A., Fukuda, J., Ognysta, U., Žumer, S. & Muševič, I. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film. Nat. Phys. 13, 1215–1220 (2017).

  26. 26.

    Wang, S., Ravnik, M. & Žumer, S. Surface-patterning generated half-skyrmion lattices in cholesteric blue phase thin films. Liq. Cryst. 45, 2329–2340 (2018).

  27. 27.

    Fukuda, J., Yoneya, M. & Yokoyama, H. Simulation of cholesteric blue phases using a Landau–de Gennes theory: effect of an applied electric field. Phys. Rev. E 80, 031706 (2009).

  28. 28.

    Tiribocchi, A., Gonnella, G., Marenduzzo, D., Orlandini, E. & Salvadore, F. Bistable defect structures in blue phase devices. Phys. Rev. Lett. 107, 237803 (2011).

  29. 29.

    Tiribocchi, A., Gonnella, G., Marenduzzo, D. & Orlandini, E. Switching dynamics in cholesteric blue phases. Soft Matter 7, 3295–3306 (2011).

  30. 30.

    Alexander, G. P. & Yeomans, J. M. Numerical results for the blue phases. Liq. Cryst. 36, 1215–1227 (2009).

  31. 31.

    Hornreich, R. M., Shtrikman, S. & Sommers, C. Photonic bands in simple and body-centered-cubic cholesteric blue phases. Phys. Rev. E 47, 2067–2072 (1993).

  32. 32.

    Etchegoin, P. Blue phases of cholesteric liquid crystals as thermotropic photonic crystals. Phys. Rev. E 62, 1435–1437 (2000).

  33. 33.

    Pieranski, P. & Cladis, P. E. Field-induced tetragonal blue phase (BP X). Phys. Rev. A 35, 355–364 (1987).

  34. 34.

    Tone, H., Yoshida, H., Yabu, S., Ozaki, M. & Kikuchi, H. Effect of anisotropic lattice deformation on the Kerr coefficient of polymer-stabilized blue-phase liquid crystals. Phys. Rev. E 89, 012506 (2014).

  35. 35.

    Cladis, P. E., Garel, T. & Pieranski, P. Kossel diagrams show electric-field-induced cubic-tetragonal structural transition in frustrated liquid-crystal blue phases. Phys. Rev. Lett. 57, 2841–2844 (1986).

  36. 36.

    Castles, F. et al. Stretchable liquid-crystal blue-phase gels. Nat. Mater. 13, 817–821.

  37. 37.

    Yoshida, H. et al. Secondary electro-optic effect in liquid crystalline cholesteric blue phases. Opt. Mater. Express 4, 960–968 (2014).

  38. 38.

    Wang, C.-T., Liu, H.-Y., Cheng, H.-H. & Lin, T.-H. Bistable effect in the liquid crystal blue phase. Appl. Phys. Lett. 96, 041106 (2010).

  39. 39.

    Miller, R. J. & Gleeson, H. F. Lattice parameter measurements from the Kossel diagrams of the cubic liquid crystal blue phases. J. de. Phys. II 6, 909–922 (1996).

  40. 40.

    Kitzerow, H. S., Crooker, P. P., Kwok, S. L., Xu, J. & Heppke, G. Dynamics of blue-phase selective reflections in an electric field. Phys. Rev. A 42, 3442–3448 (1990).

  41. 41.

    Li, Y. et al. Dielectric dispersion on the Kerr constant of blue phase liquid crystals. Appl. Phys. Lett. 99, 181126 (2011).

  42. 42.

    Sahoo, R., Chojnowska, O., Dabrowski, R. & Dhara, S. Experimental studies on the rheology of cubic blue phases. Soft Matter 12, 1324–1329 (2016).

  43. 43.

    Cladis, P. E., Pieranski, P. & Joanicot, M. Elasticity of blue phase I of cholesteric liquid crystals. Phys. Rev. Lett. 52, 542–545 (1984).

  44. 44.

    Gerber, P. R. Electro-optical effects of a small-pitch blue-phase system. Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).

  45. 45.

    Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H. & Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nat. Mater. 1, 64–68 (2002).

  46. 46.

    Kikuchi, H., Izena, S., Higuchi, H., Okumura, Y. & Higashiguchi, K. A giant polymer lattice in a polymer-stabilized blue phase liquid crystal. Soft Matter 11, 4572–4575 (2015).

  47. 47.

    Li, X. et al. Mesoscale martensitic transformation in single crystals of topological defects. Proc. Natl Acad. Sci. USA 114, 10011–10016 (2017).

  48. 48.

    Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 3, 211–219 (2004).

Download references

Acknowledgements

This research was funded by the Asian Office of Aerospace Research and Development (AOARD), Air Force Office of Scientific Research (AFOSR), grant no. FA2386-18-1-4039; work at NSYSU was partially supported by the Ministry of Science and Technology of Taiwan, grant no. MOST 106-2112-M-110-003-MY3; work at PSU was supported by a grant from the Air Force Research Laboratory and the W. E. Leonhard Chair Professorship.

Author information

T.-H.L., I.C.K. and T.J.B. identified the significance of this work. C.-W.C. and C.-C.L. conducted the initial feasibility experiments. D.-Y.G. carried out the detailed experimental study with assistance from K.-H.L., T.-M.F., H.-C.J. and C.-T.W. C.-W.C. performed the data analysis with assistance from D.-Y.G. and under the supervision of I.C.K. and T.-H.L. All authors participated in discussion. C.-W.C., I.C.K., D.-Y.G., T.J.B. and T.-H.L. authored the manuscript.

Correspondence to Iam Choon Khoo or Tsung-Hsien Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10, Figs. 1–9, references and Supplementary Video 1 legend.

Supplementary Video 1

Kossel diffraction pattern evolution of a blue-phase I liquid crystal through cubic, orthorhombic and tetragonal symmetry.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Chen, C., Li, C. et al. Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction. Nat. Mater. (2019) doi:10.1038/s41563-019-0512-3

Download citation