Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reciprocal space imaging of ionic correlations in intercalation compounds

An Author Correction to this article was published on 30 October 2019

This article has been updated

Abstract

The intercalation of alkali ions into layered materials has played an essential role in battery technology since the development of the first lithium-ion electrodes. Coulomb repulsion between the intercalants leads to ordering of the intercalant sublattice, which hinders ionic diffusion and impacts battery performance. While conventional diffraction can identify the long-range order that can occur at discrete intercalant concentrations during the charging cycle, it cannot determine short-range order at other concentrations that also disrupt ionic mobility. In this Article, we show that the use of real-space transforms of single-crystal diffuse scattering, measured with high-energy synchrotron X-rays, allows a model-independent measurement of the temperature dependence of the length scale of ionic correlations along each of the crystallographic axes in sodium-intercalated V2O5. The techniques described here provide a new way of probing the evolution of structural ordering in crystalline materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The monoclinic structure of Na0.45V2O5 (space group C2/m), with a = 15.34 Å, b = 3.61 Å, c = 10.04 Å and β = 109.6° at 100 K, derived from the Crystallographic Information File of ref. 32.
Fig. 2: Diffuse scattering and ΔPDF from Na0.45V2O5.
Fig. 3: A comparison of the real-space model of sodium ions in the x = 0 plane with the ΔPDF peak intensities at 50 K, from which the model is derived.
Fig. 4
Fig. 5: The results of fitting the ΔPDF peak intensities to a decaying exponential as a function of temperature along the three crystallographic axes.

Data availability

Files containing the datasets used in this Article are available for download from the Materials Data Facility43 (https://doi.org/10.18126/ooin-ce23) as NeXus files stored in the HDF5 format44. The files for each measured temperature contain S(Q), ΔPDF and, at three temperatures, the total PDF results. The data can be plotted using the Python package NeXpy (http://nexpy.github.io/nexpy/).

Change history

  • 30 October 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    CAS  Article  Google Scholar 

  2. 2.

    Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Tepavcevic, S. et al. Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 9, 8194–8205 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Sai Gautam, G. et al. The intercalation phase diagram of Mg in V2O5 from first-principles. Chem. Mater. 27, 3733–3742 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Sun, X., Bonnick, P. & Nazar, L. F. Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett. 1, 297–301 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    CAS  Article  Google Scholar 

  8. 8.

    Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Berlinsky, A. J., Unruh, W. G., McKinnon, W. R. & Haering, R. R. Theory of lithium ordering in LixTiS2. Solid State Commun. 31, 135–138 (1979).

    CAS  Article  Google Scholar 

  10. 10.

    Thompson, A. H. Lithium ordering in LixTiS2. Phys. Rev. Lett. 40, 1511–1514 (1978).

    CAS  Article  Google Scholar 

  11. 11.

    Reynier, Y. et al. Entropy of Li intercalation in LixCoO2. Phys. Rev. B 70, 174304 (2004).

    Article  Google Scholar 

  12. 12.

    Reimers, J. N. & Dahn, J. R. Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).

    CAS  Article  Google Scholar 

  13. 13.

    Li, W., Reimers, J. N. & Dahn, J. R. Crystal structure of LixNi2−xO2 and a lattice-gas model for the order–disorder transition. Phys. Rev. B 46, 3236–3246 (1992).

    CAS  Article  Google Scholar 

  14. 14.

    Gao, Y., Reimers, J. N. & Dahn, J. R. Changes in the voltage profile of Li/Li1+xMn2O4 cells as a function of x. Phys. Rev. B 54, 3878–3883 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    Kim, S. W. & Pyun, S. I. Thermodynamic and kinetic approaches to lithium intercalation into a Li1−δMn2O4 electrode using Monte Carlo simulation. Electrochim. Acta 46, 987–997 (2001).

    CAS  Article  Google Scholar 

  16. 16.

    Wolverton, C. & Zunger, A. First-principles prediction of vacancy order–disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81, 606–609 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998).

    Article  Google Scholar 

  18. 18.

    Ceder, G. & Van der Ven, A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochim. Acta 45, 131–150 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    Wang, P.-F. et al. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci. Adv. 4, eaar6018 (2018).

    Article  Google Scholar 

  20. 20.

    Toumar, A. J., Ong, S. P., Richards, W. D., Dacek, S. & Ceder, G. Vacancy ordering in O3-type layered metal oxide sodium-ion battery cathodes. Phys. Rev. Appl. 4, 064002 (2015).

    Article  Google Scholar 

  21. 21.

    Chen, T., Sai Gautam, G., Huang, W. & Ceder, G. First-principles study of the voltage profile and mobility of Mg intercalation in a chromium oxide spinel. Chem. Mater. 30, 153–162 (2017).

    Article  Google Scholar 

  22. 22.

    Kaufman, J. L. & Van der Ven, A. NaxCoO2 phase stability and hierarchical orderings in the O3/P3 structure family. Phys. Rev. Mater. 3, 015402 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Shao-Horn, Y., Levasseur, S., Weill, F. & Delmas, C. Probing lithium and vacancy ordering in O3 layered LixCoO2 (x ≈ 0.5). J. Electrochem. Soc. 150, A366–A373 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    Welberry, T. R. & Butler, B. D. Diffuse X-ray scattering from disordered crystals. Chem. Rev. 95, 2369–2403 (1995).

    CAS  Article  Google Scholar 

  25. 25.

    Frey, F. Diffuse scattering from disordered crystals. Acta Crystallogr. B 51, 592–603 (1995).

    Article  Google Scholar 

  26. 26.

    Nield, V. M. & Keen, D. A. Diffuse Nneutron Sscattering from Ccrystalline Mmaterials (Oxford Univ. Press, 2001).

  27. 27.

    Egami, T. & Billinge, S. J. L. (eds) Underneath the Bragg Peaks, Structural Analysis of Complex Materials (Pergamon, 2003).

  28. 28.

    Weber, T. & Simonov, A. The three-dimensional pair distribution function analysis of disordered single crystals: basic concepts. Z. Kristallogr. 227, 238–247 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Wadsley, A. D. The crystal structure of Na2−xV6O15. Acta Crystallogr. 8, 695–701 (1955).

    CAS  Article  Google Scholar 

  30. 30.

    Kanai, Y., Kagoshima, S. & Nagasawa, H. Structural phase transition in β-M xV2O5 (M = Na, Li). J. Phys. Soc. Jpn. 51, 697–698 (1982).

    CAS  Article  Google Scholar 

  31. 31.

    Marley, P. M., Horrocks, G. A., Pelcher, K. E. & Banerjee, S. Transformers: the changing phases of low-dimensional vanadium oxide bronzes. Chem. Commun. 51, 5181–5198 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Hughes, J. M. & Finger, L. W. Bannermanite, a new sodium-potassium vanadate isostructural with β-NaxV6O15. Am. Miner. 68, 634–641 (1983).

    CAS  Google Scholar 

  33. 33.

    Hiroyuki, Y. & Yutaka, U. Magnetic, electric and structural properties of β-AxV2O5 (A = Na, Ag). J. Phys. Soc. Jpn. 68, 2735–2740 (2013).

    Google Scholar 

  34. 34.

    Marley, P. M. et al. Emptying and filling a tunnel bronze. Chem. Sci. 6, 1712–1718 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Horrocks, G. A. et al. Mitigating cation diffusion limitations and intercalation-induced framework transitions in a 1D tunnel-structured polymorph of V2O5. Chem. Mater. 29, 10386–10397 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Galy, J., Darriet, J., Casalot, A. & Goodenough, J. B. Structure of the M xV2O5-β and M xV2−yT yO5-β phases. J. Solid State Chem. 1, 339–348 (1970).

    Article  Google Scholar 

  37. 37.

    Yamaura, J.-i, Isobe, M., Yamada, H., Yamauchi, T. & Ueda, Y. Low temperature X-ray study of β-AxV2O5. J. Phys. Chem. Solids 63, 957–960 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    Yamada, H. & Ueda, Y. Magnetic, electric and structural properties of β-A xV2O5 (A = Na, Ag). J. Phys. Soc. Jpn. 68, 2735–2740 (1999).

    CAS  Article  Google Scholar 

  39. 39.

    Collins, M. F. Magnetic Critical Scattering (Oxford Univ. Press, 1989).

  40. 40.

    Meethong, N., Kao, Y. H., Speakman, S. A. & Chiang, Y.-M. Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties. Adv. Funct. Mater. 19, 1060–1070 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    Jovanović, A. et al. Structural and electronic properties of V2O5 and their tuning by doping with 3d elements—modelling using the DFT+U method and dispersion correction. Phys. Chem. Chem. Phys. 20, 13934–13943 (2018).

    Article  Google Scholar 

  42. 42.

    Jennings, G. Crystal Coordinate Transformation Workflow (CCTW) (SourceForge, 2019); https://sourceforge.net/projects/cctw/

  43. 43.

    Blaiszik, B. et al. The Materials Data Facility. J. Miner. Met. Mater. Soc. 68, 2045–2052 (2016).

    Article  Google Scholar 

  44. 44.

    Könnecke, M. et al. The NeXus data format. J. Appl. Crystallogr. 48, 301–305 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and Scientific User Facilities Division. X-ray experiments were performed at APS, which is supported by the Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357, and CHESS, which is supported by the NSF and NIH/NIGMS via NSF award DMR-1332208. Computational developments were supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the US Department of Energy, Office of Science, and the National Nuclear Security Administration. We thank D. Robinson and X. Zhang for technical support during the experiments, A. Rettie for performing the EDX analysis, T. Weber and A. Simonov for discussions about the ΔPDF technique, B. Campbell for help with the formalism of transforming the data to reciprocal space and P. Zapol and C. Haley for discussions about interpreting the results. Crystal structure images were generated using CrystalMaker, CrystalMaker Software Ltd, http://www.crystalmaker.com.

Author information

Affiliations

Authors

Contributions

Samples were prepared by J.T.V. and prepared for measurement by M.J.K. The experiments were devised by M.J.K., S.R. and R.O. The X-ray experiments were performed by M.J.K., S.R., J.P.C.R., J.M.W. and R.O. The data were analysed by M.J.K., R.O., J.M.W. and G.J., using software written by G.J., M.J.K., R.O. and J.M.W. The manuscript and Supplementary information were written by R.O. with input from all the authors.

Corresponding author

Correspondence to Raymond Osborn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–15, notes and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krogstad, M.J., Rosenkranz, S., Wozniak, J.M. et al. Reciprocal space imaging of ionic correlations in intercalation compounds. Nat. Mater. 19, 63–68 (2020). https://doi.org/10.1038/s41563-019-0500-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing