Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanical dissipation via image potential states on a topological insulator surface

Abstract

Joule energy loss due to resistive heating is omnipresent in today’s electronic devices whereas quantum-mechanical dissipation is largely unexplored. Here, we experimentally observe a suppression of the Joule dissipation in Bi2Te3 due to topologically protected surface states. Instead, a different type of dissipation mechanism is observed by pendulum atomic force microscopy, which is related to single-electron tunnelling resonances into image potential states that are slightly above the Bi2Te3 surface. The application of a magnetic field leads to the breakdown of the topological protection of the surface states and restores the expected Joule dissipation process. Nanomechanical energy dissipation experienced by the cantilever of the pendulum atomic force microscope provides a rich source of information on the dissipative nature of the quantum-tunnelling phenomena on the topological insulator surface, with implications for coupling a mechanical oscillator to the generic quantum material.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: STM, STS and pAFM measurements on the Bi2Te3 surface performed at T = 5 K.
Fig. 2: Series of field emission resonances measured with a static and oscillating STM tip, and simultaneous energy dissipation measurement at T = 5 K.
Fig. 3: Voltage- and distance-dependent AFM dissipation measured at T = 5 K on Bi2Te3 surface.
Fig. 4: Energy dissipation map on Bi2Te3 plotted versus distance and tip–sample voltage.
Fig. 5: Energy dissipation as a function of B changing in the range 0 T < B < 800 mT measured at T = 5 K on the Bi2Te3 surface.
Fig. 6: Single-electron tunnelling between IPSs of the Bi2Te3 sample and an oscillating AFM tip.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. 1.

    Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Seo, J. et al. Transmission of topological surface states through surface barriers. Nature 466, 343–346 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009).

    Article  Google Scholar 

  5. 5.

    He, H.-T. et al. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett. 106, 166805 (2011).

    Article  Google Scholar 

  6. 6.

    Straub, D. & Himpsel, F. J. Spectroscopy of image-potential states with inverse photoemission. Phys. Rev. B 33, 2256–2262 (1986).

    CAS  Article  Google Scholar 

  7. 7.

    Dose, V. Image potential surface states. Phys. Scr. 36, 669–672 (1987).

    CAS  Article  Google Scholar 

  8. 8.

    Echenique, P. & Uranga, M. Image potential states at surfaces. Surf. Sci. 247, 125–132 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    Berthold, W. et al. Momentum-resolved lifetimes of image-potential states on Cu(100). et al. Phys. Rev. Lett. 88, 056805 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    Wahl, P., Schneider, M. A., Diekhöner, L., Vogelgesang, R. & Kern, K. Quantum coherence of image-potential states. Phys. Rev. Lett. 91, 106802 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    Schouteden, K. & Van Haesendonck, C. Quantum confinement of hot image-potential state electrons. Phys. Rev. Lett. 103, 266805 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Niesner, D. & Fauster, T. Image-potential states and work function of graphene. J. Phys. Condens. Matter 26, 393001 (2014).

    Article  Google Scholar 

  13. 13.

    Sobota, J. A. et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3. Phys. Rev. Lett. 108, 117403 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Sobota, J. A. et al. Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3. Phys. Rev. Lett. 111, 136802 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Niesner, D. et al. Unoccupied topological states on bismuth chalcogenides. Phys. Rev. B 86, 205403 (2012).

    Article  Google Scholar 

  16. 16.

    Niesner, D. et al. Bulk and surface electron dynamics in a p-type topological insulator SnSb2Te4. Phys. Rev. B 89, 081404 (2014).

    Article  Google Scholar 

  17. 17.

    Niesner, D. et al. Electron dynamics of unoccupied states in topological insulators. J. Electron Spectrosc. Relat. Phenom. 195, 258–262 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Gundlach, K. H. Zur berechnung des tunnelstroms durch eine trapezförmige potentialstufe. Solid State Electron. 9, 949–957 (1966).

    Article  Google Scholar 

  19. 19.

    Höfer, U. et al. Time-resolved coherent photoelectron spectroscopy of quantized electronic states on metal surfaces. Science 277, 1480–1482 (1997).

    Article  Google Scholar 

  20. 20.

    Kisiel, M. et al. Suppression of electronic friction on Nb films in the superconducting state. Nat. Mater. 10, 119–122 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Langer, M. et al. Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface. Nat. Mater. 13, 173–177 (2013).

    Article  Google Scholar 

  22. 22.

    Kisiel, M. et al. Noncontact atomic force microscope dissipation reveals a central peak of SrTiO3 structural phase transition. Phys. Rev. Lett. 115, 046101 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. & Rugar, D. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    Volokitin, A. I. & Persson, B. N. J. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291–1329 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    Neupane, M. et al. Topological surface states and Dirac point tuning in ternary topological insulators. Phys. Rev. B 85, 235406 (2012).

    Article  Google Scholar 

  26. 26.

    Miyamoto, K. et al. Topological surface states with persistent high spin polarization across the Dirac point in Bi2Te2Se and Bi2Se2T. Phys. Rev. Lett. 109, 166802 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Schouteden, K. et al. Moiré superlattices at the topological insulator Bi2Te3. Sci. Rep. 6, 20278 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Pivetta, M., Patthey, F., Stengel, M., Baldereschi, A. & Schneider, W. D. Local work function moiré pattern on ultrathin ionic films: NaCl on Ag(100). Phys. Rev. B 72, 115404 (2005).

    Article  Google Scholar 

  29. 29.

    Bose, S. et al. Image potential states as a quantum probe of graphene interfaces. New J. Phys. 12, 023028 (2010).

    Article  Google Scholar 

  30. 30.

    Volokitin, A. I., Persson, B. N. J. & Ueba, H. Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems. Phys. Rev. B 73, 165423 (2006).

    Article  Google Scholar 

  31. 31.

    Cockins, L. et al. Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy. Proc. Natl Acad. Sci. USA 107, 9496–9501 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    Kisiel, M. et al. Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO3 surfaces. Nat. Commun. 9, 2946 (2018).

    Article  Google Scholar 

  33. 33.

    Stomp, R. et al. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 94, 056802 (2005).

    Article  Google Scholar 

  34. 34.

    Paulsson, M., Zahid, F. & Datta, S. Resistance of a Molecule 426 (CRC Press, 2002).

  35. 35.

    Volokitin, A. I. & Persson, B. N. J. in Fundamentals of Friction and Wear on the Nanoscale (eds Gnecco, E. & Meyer, E.) 426 (Springer, 2007).

  36. 36.

    Sarid, D. Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces (Oxford Univ. Press, 1991).

  37. 37.

    Sessi, P. et al. Signatures of Dirac fermion-mediated magnetic order. Nat. Commun. 5, 5349 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Olsen, J. L. Electron Transport in Metals (Interscience, 1962).

  39. 39.

    Fatayer, S. et al. Controlled fragmentation of single molecules with atomic force microscopy by employing doubly charged states. Phys. Rev. Lett. 121, 226101 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Cleveland, J. P., Anczykowski, B., Schmid, A. E. & Elings, V. B. Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613–2615 (1998).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussions with E. Tosatti. The Basel group acknowledges financial support from the Swiss National Science Foundation (SNSF), the COST action Project MP1303, the SINERGIA Project CRSII2 136287/1, the European Union’s Horizon 2020 research and innovation programme (ERC Advanced Grant no. 834402) and the Swiss Nanoscience Institute (project no. P1301). O.G. acknowledges financial support from TÜBİTAK project 114F036 and the COST action project MP1303 (TÜBİTAK112T818).

Author information

Affiliations

Authors

Contributions

O.G. proposed the experiment. D.Y., M.K. and U.G. performed the experiments. E.M. coordinated the project. All authors discussed the results and contributed to the preparation of the paper.

Corresponding authors

Correspondence to D. Yildiz or M. Kisiel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Figs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yildiz, D., Kisiel, M., Gysin, U. et al. Mechanical dissipation via image potential states on a topological insulator surface. Nat. Mater. 18, 1201–1206 (2019). https://doi.org/10.1038/s41563-019-0492-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing