Metal–oxide–semiconductors

Ultrathin channels make transistors go faster

Reducing the thickness of an amorphous conductive indium tin oxide layer down to a few nanometres has enabled the realization of 40-nm-long channel transistors with remarkable operating characteristics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Transistor structure and the impact of materials and parameters scaling on operating characteristics.

References

  1. 1.

    Gupta, S., Navaraj, W. T., Lorenzelli, L. & Dahiya, R. npj Flex. Electron. 2, 8 (2018).

    Article  Google Scholar 

  2. 2.

    Franklin, A. D. Science 349, aab2750 (2015).

    Article  Google Scholar 

  3. 3.

    Wu, W. Nanoscale 9, 7342–7372 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Khan, S., Lorenzelli, L. & Dahiya, R. S. IEEE Sens. J. 15, 3164–3185 (2015).

    Article  Google Scholar 

  5. 5.

    Petti, L. et al. Appl. Phys. Rev. 3, 021303 (2016).

    Article  Google Scholar 

  6. 6.

    Li, S. et al. Nat. Mater. https://doi.org/10.1038/s41563-019-0455-8 (2019).

    Article  Google Scholar 

  7. 7.

    Faber, H. et al. Sci. Adv. 3, e1602640 (2017).

    Article  Google Scholar 

  8. 8.

    Shih, C. W., Chin, A., Lu, C. F. & Su, W. F. Sci. Rep. 6, 19023 (2016).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Anthopoulos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anthopoulos, T.D. Ultrathin channels make transistors go faster. Nat. Mater. 18, 1033–1034 (2019). https://doi.org/10.1038/s41563-019-0489-y

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing