Robust zero-energy modes in an electronic higher-order topological insulator

Article metrics

Abstract

Quantum simulators are essential tools for understanding complex quantum materials. Platforms based on ultracold atoms in optical lattices and photonic devices have led the field so far, but the basis for electronic quantum simulators is now being developed. Here, we experimentally realize an electronic higher-order topological insulator (HOTI). We create a breathing kagome lattice by manipulating carbon monoxide molecules on a Cu(111) surface using a scanning tunnelling microscope. We engineer alternating weak and strong bonds to show that a topological state emerges at the corner of the non-trivial configuration, but is absent in the trivial one. Different from conventional topological insulators, the topological state has two dimensions less than the bulk, denoting a HOTI. The corner mode is protected by a generalized chiral symmetry, which leads to a particular robustness against perturbations. Our versatile approach to designing artificial lattices holds promise for revealing unexpected quantum phases of matter.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Design of the breathing kagome lattice.
Fig. 2: Wave function mapping.
Fig. 3: Robustness of the zero mode.
Fig. 4: Boundary defects in the kagome lattice.

Data availability

All data are available from the corresponding authors on reasonable request. The experimental data can be accessed using open-source tools.

References

  1. 1.

    Feynman, R. P. There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).

  2. 2.

    Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

  3. 3.

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

  4. 4.

    Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

  5. 5.

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

  6. 6.

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

  7. 7.

    Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

  8. 8.

    Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

  9. 9.

    Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

  10. 10.

    Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin–based logic operations atom by atom. Science 332, 1062–1064 (2011).

  11. 11.

    Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).

  12. 12.

    Drost, R., Ojanen, T., Harju, A. & Liljeroth, P. Topological states in engineered atomic lattices. Nat. Phys. 13, 668–671 (2017).

  13. 13.

    Slot, M. R. et al. p-band engineering in artificial electronic lattices. Phys. Rev. X 9, 011009 (2019).

  14. 14.

    Collins, L. C., Witte, T. G., Silverman, R., Green, D. B. & Gomes, K. K. Imaging quasiperiodic electronic states in a synthetic penrose tiling. Nat. Commun. 8, 15961 (2017).

  15. 15.

    Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127–131 (2019).

  16. 16.

    Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

  17. 17.

    Haldane, F. D. M. Nobel lecture: topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).

  18. 18.

    Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  19. 19.

    Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

  20. 20.

    Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. Photon. 12, 408–415 (2018).

  21. 21.

    Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

  22. 22.

    Mittal, S. et al. Photonic quadrupole topological phases. Nat. Photon. https://doi.org/10.1038/s41566-019-0452-0 (2019).

  23. 23.

    El Hassan, A. et al. Corner states of light in photonic waveguides. Preprint at https://arxiv.org/abs/1812.08185 (2018).

  24. 24.

    Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).

  25. 25.

    Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018).

  26. 26.

    Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018).

  27. 27.

    Xue, H., Yang, Y., Gao, F., Chong, Y. & Zhang, B. Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater. 18, 108–112 (2019).

  28. 28.

    Ni, X., Weiner, M., Alú, A. & Khanikaev, A. B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113–120 (2019).

  29. 29.

    Ezawa, M. Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018).

  30. 30.

    Benalcazar, W. A., Li, T. & Hughes, T. L. Quantization of fractional corner charge in C n-symmetric higher-order topological crystalline insulators. Phys. Rev. B 99, 245151 (2019).

  31. 31.

    Bartels, L., Meyer, G. & Rieder, K.-H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–700 (1997).

  32. 32.

    Meyer, G. et al. Controlled manipulation of atoms and small molecules with a low temperature scanning tunneling microscope. Single Mol. 1, 79–86 (2000).

  33. 33.

    Celotta, R. J. et al. Invited article: autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope. Rev. Sci. Instrum. 85, 121301 (2014).

Download references

Acknowledgements

We acknowledge H. Hansson, D. Haldane and M. Franz for fruitful discussions. W.A.B. thanks the Eberly Postdoctoral Fellowship at The Pennsylvania State University for support. The work of D.B. is supported by Spanish Ministerio de Ciencia, Innovation y Universidades (MICINN) under project FIS2017-82804-P and by the Transnational Common Laboratory Quantum–ChemPhys. D.V., I.S. and C.M.S. acknowledge funding from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek via grants 16PR3245 and DDC13, and D.V. acknowledges the European Research Council Advanced Grant FIRSTSTEP 692691.

Author information

S.N.K. and J.J.v.d.B. performed the theoretical calculations under the supervision of C.M.S., W.A.B. and D.B. M.R.S., S.N.K. and I.S. planned the experiment. M.R.S. performed the experiment and data analysis with contributions from P.C. under the supervision of I.S. and D.V. C.M.S., S.N.K. and M.R.S. wrote the manuscript with input from all authors.

Correspondence to I. Swart or C. Morais Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Notes 1–4 and refs. 1–13.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading