Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons

Article metrics


Miniaturized lasers are an emerging platform for generating coherent light for quantum photonics, in vivo cellular imaging, solid-state lighting and fast three-dimensional sensing in smartphones1,2,3. Continuous-wave lasing at room temperature is critical for integration with opto-electronic devices and optimal modulation of optical interactions4,5. Plasmonic nanocavities integrated with gain can generate coherent light at subwavelength scales6,7,8,9, beyond the diffraction limit that constrains mode volumes in dielectric cavities such as semiconducting nanowires10,11. However, insufficient gain with respect to losses and thermal instabilities in nanocavities has limited all nanoscale lasers to pulsed pump sources and/or low-temperature operation6,7,8,9,12,13,14,15. Here, we show continuous-wave upconverting lasing at room temperature with record-low thresholds and high photostability from subwavelength plasmons. We achieve selective, single-mode lasing from Yb3+/Er3+-co-doped upconverting nanoparticles conformally coated on Ag nanopillar arrays that support a single, sharp lattice plasmon cavity mode and greater than wavelength λ/20 field confinement in the vertical dimension. The intense electromagnetic near-fields localized in the vicinity of the nanopillars result in a threshold of 70 W cm−2, orders of magnitude lower than other small lasers. Our plasmon-nanoarray upconverting lasers provide directional, ultra-stable output at visible frequencies under near-infrared pumping, even after six hours of constant operation, which offers prospects in previously unrealizable applications of coherent nanoscale light.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CW upconverting nanolasing on Ag nanopillar arrays at room temperature.
Fig. 2: Upconverting nanolasing showed spatial and polarization coherence, as well as high photostability.
Fig. 3: Upconverting CW nanolasing under a pulsed laser and semiquantum modelling in the time domain.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

Code availability

The codes used for this study are available from the corresponding authors on reasonable request.


  1. 1.

    Hill, M. T. & Gather, M. C. Advances in small lasers. Nat. Photon. 8, 908–918 (2014).

  2. 2.

    Ma, R. M. & Oulton, R. F. Applications of nanolasers. Nat. Nanotechnol. 14, 12–22 (2019).

  3. 3.

    Wang, D., Wang, W., Knudson, M. P., Schatz, G. C. & Odom, T. W. Structural engineering in plasmon nanolasers. Chem. Rev. 118, 2865–2881 (2017).

  4. 4.

    Fan, F. J. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

  5. 5.

    Tamboli, A. C. et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nat. Photon. 1, 61–64 (2007).

  6. 6.

    Wang, D. et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nat. Nanotechnol. 12, 889–894 (2017).

  7. 7.

    Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013).

  8. 8.

    Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

  9. 9.

    Lu, Y. J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).

  10. 10.

    Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

  11. 11.

    Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

  12. 12.

    Wang, S. et al. Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit. Nat. Commun. 8, 1889 (2017).

  13. 13.

    Hakala, T. K. et al. Lasing in dark and bright modes of a finite-sized plasmonic lattice. Nat. Commun. 8, 13687 (2017).

  14. 14.

    Sidiropoulos, T. P. H. et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys. 10, 870–876 (2014).

  15. 15.

    Zhang, Q. et al. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5, 4953 (2014).

  16. 16.

    Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol 10, 924–936 (2015).

  17. 17.

    Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9, 300–305 (2014).

  18. 18.

    Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).

  19. 19.

    Anderson, R. B., Smith, S. J., May, P. S. & Berry, M. T. Revisiting the NIR-to-visible upconversion mechanism in β-NaYF4:Yb3+,Er3+. J. Phys. Chem. Lett. 5, 36–42 (2014).

  20. 20.

    Zhu, H. et al. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. ACS Nano. 7, 11420–11426 (2013).

  21. 21.

    Fernandez-Bravo, A. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 13, 572–577 (2018).

  22. 22.

    Haider, G. et al. A highly-efficient single segment white random laser. ACS Nano. 12, 11847–11859 (2018).

  23. 23.

    Ostrowski, A. D. et al. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano. 6, 2686–2692 (2012).

  24. 24.

    Tian, B. et al. Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals. Nat. Commun. 9, 3082 (2018).

  25. 25.

    Schuck, P. J., Willets, K. A., Fromm, D. P., Twieg, R. J. & Moerner, W. E. A novel fluorophore for two-photon-excited single-molecule fluorescence. Chem. Phys. 318, 7–11 (2005).

  26. 26.

    Grim, J. Q. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol. 9, 891–895 (2014).

  27. 27.

    Samuel, I. D. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

  28. 28.

    Nielsen, M. P., Shi, X. Y., Dichtl, P., Maier, S. A. & Oulton, R. F. Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing. Science 358, 1179–1181 (2017).

  29. 29.

    Yuan, P. et al. Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core–shell nanocomposites for cell imaging. Nanoscale 4, 5132–5137 (2012).

  30. 30.

    Sun, Q. C. et al. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals. Nano Lett. 14, 101–106 (2014).

  31. 31.

    Auguie, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

  32. 32.

    Zou, S., Janel, N. & Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004).

  33. 33.

    Yang, A. et al. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6, 6939 (2015).

  34. 34.

    Wang, D. Q. et al. Stretchable nanolasing from hybrid quadrupole plasmons. Nano Lett. 18, 4549–4555 (2018).

  35. 35.

    Liu, Q. et al. Single upconversion nanoparticle imaging at sub-10 W cm-2 irradiance. Nat. Photon. 12, 548–553 (2018).

  36. 36.

    Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

  37. 37.

    Wei, W. et al. Cross relaxation induced pure red upconversion in activator- and sensitizer-rich lanthanide nanoparticles. Chem. Mater. 26, 5183–5186 (2014).

  38. 38.

    Tajon, C. A. et al. Photostable and efficient upconverting nanocrystal-based chemical sensors. Opt. Mater. 84, 345–353 (2018).

  39. 39.

    Ma, R. M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater. 10, 110–113 (2011).

  40. 40.

    Teitelboim, A. et al. Energy transfer networks within upconverting nanoparticles are complex systems with collective, robust, and history-dependent dynamics. J. Phys. Chem. C. 123, 2678–2689 (2019).

  41. 41.

    Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

  42. 42.

    Levy, E. S. et al. Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging. ACS Nano. 10, 8423–8433 (2016).

  43. 43.

    Henzie, J., Lee, M. H. & Odom, T. W . Multiscale patterning of plasmonic metamaterials. Nat. Nanotechnol. 2, 549–554 (2007).

Download references


This work was supported by the National Science Foundation (NSF) under DMR-1608258 and the Vannevar Bush Faculty Fellowship from DOD under N00014-17-1-3023. The work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. Portions of this research were supported by the Global Research Laboratory Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (grant no. 2016911815). The work used the Northwestern University Micro/Nano Fabrication Facility, which is partially supported by Soft and Hybrid Nanotechnology Experimental Resource (grant no. NSF ECCS-1542205), the Materials Research Science and Engineering Center (grant no. DMR-1720139), and the State of Illinois and Northwestern University. A.T. was supported by the Weizmann Institute of Science—National Postdoctoral Award Program for Advancing Women in Science. We thank F. Scotognello for assistance with the ultrafast lasing measurements at the Molecular Foundry.

Author information

A.F.-B. and D.W. contributed equally to this work. A.F.-B. measured non-linear optical properties, lasing emissions and coherence characteristics of upconverting nanoparticles and nanolasers. D.W. and J.G. fabricated plasmonic nanoparticle arrays. D.W. characterized the linear optical properties and modelled plasmon resonances and upconverting lasing. E.S.B. contributed to data analysis. A.F.-T. and A.B. performed g(2) measurements. C.T., E.M.C. and B.E.C. contributed to upconverting nanoparticle synthesis. All authors analysed the data, wrote and revised the manuscript.

Correspondence to P. James Schuck or Teri W. Odom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Tables 1–3 and refs. 1–11.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernandez-Bravo, A., Wang, D., Barnard, E.S. et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat. Mater. 18, 1172–1176 (2019) doi:10.1038/s41563-019-0482-5

Download citation