Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nodal superconducting exchange coupling

Abstract

A superconducting spin valve consists of a thin-film superconductor between two ferromagnetic layers. A change of magnetization alignment shifts the superconducting transition temperature (ΔΤc) due to an interplay between the magnetic exchange energy and the superconducting condensate. The magnitude of ΔΤc scales inversely with the superconductor thickness (dS) and is zero when dS exceeds the superconducting coherence length (ξ). Here, we report a superconducting spin-valve effect involving a different underlying mechanism in which magnetization alignment and ΔΤc are determined by nodal quasiparticle excitation states on the Fermi surface of the d-wave superconductor YBa2Cu3O7–δ sandwiched between insulating layers of ferromagnetic Pr0.8Ca0.2MnO3. We observe ΔΤc values that approach 2 K with the sign of ΔΤc oscillating with dS over a length scale exceeding 100ξ and, for particular values of dS, the superconducting state reinforces an antiparallel magnetization alignment. These results pave the way to all-oxide superconducting memory in which superconductivity modulates the magnetic state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of PCMO (50 nm)/YBCO (5 u.c.)/PCMO (100 nm).
Fig. 2: Electronic and magnetic properties of PCMO/YBCO/PCMO trilayers.
Fig. 3: Exchange coupling in PCMO/YBCO/PCMO.
Fig. 4: Different types of superconducting spin valve.

Similar content being viewed by others

Data availability

Supporting research data has been deposited in the University of Cambridge research repository and is publicly available at https://doi.org/10.17863/CAM.37835.

References

  1. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  CAS  Google Scholar 

  2. Binasch, G., Grunberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structrues with antiferromagnetic interlayer exchange. Phys. Rev. B. 39, 4828–4830 (1989).

    Article  CAS  Google Scholar 

  3. de Gennes, P. G. Coupling between ferromagnets through a superconducting layer. Phys. Lett. 23, 10–11 (1966).

    Article  Google Scholar 

  4. Meservey, R., Tedrow, P. M. & Fulde, P. Magnetic field splitting of the quasiparticle states in superconducting Al films. Phys. Rev. Lett. 25, 1270–1272 (1970).

    Article  CAS  Google Scholar 

  5. Tedrow, P. M., Tkaczyk, J. E. & Kumar, A. Spin-polarized electron tunnelling study of an artificially layered superconductor with internal magnetic field: EuO-Al. Phys. Rev. Lett. 56, 1746–1749 (1986).

    Article  CAS  Google Scholar 

  6. Li, B. et al. Superconducting spin switch with infinite magnetoresistance induced by an internal exchange field. Phys. Rev. Lett. 110, 097001 (2013).

    Article  Google Scholar 

  7. Zhu, Y., Pal, A., Blamire, M. G. & Barber, Z. H. Superconducting exchange coupling between ferromagnets. Nat. Mater. 16, 195–199 (2017).

    Article  CAS  Google Scholar 

  8. Moraru, I. C., Pratt, W. P. Jr & Birge, N. O. Magnetization-dependent T c shift in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet. Phys. Rev. Lett. 96, 037004 (2006).

    Article  Google Scholar 

  9. Flokstra, M. G. et al. Controlled suppression of superconductivity by the generation of polarized Cooper pairs in spin-valve structures. Phys. Rev. B. 91, 060501(R) (2015).

    Article  Google Scholar 

  10. Miao, G.-X., Ramos, A. V. & Moodera, J. S. Infinite magnetoresistance from the spin dependent proximity effect in symmetry driven bcc-Fe/V/Fe heteroepitaxial superconducting spin valves. Phys. Rev. Lett. 101, 137001 (2008).

    Article  Google Scholar 

  11. Cadden-Zimansky, P. et al. Asymmetric ferromagnet-superconductor-ferromagnet switch. Phys. Rev. B 77, 184501 (2008).

    Article  Google Scholar 

  12. Zhu, J., Krivorotov, I. N., Halterman, K. & Valls, O. T. Angular dependence of the superconducting transition temperature in ferromagnet-superconductor-ferromagnet trilayers. Phys. Rev. Lett. 105, 207002 (2010).

    Article  Google Scholar 

  13. Potenza, A. & Marrows, C. H. Superconductor-ferromagnet CuNi/Nb/CuNi trilayers as superconducting spin-valve core structures. Phys. Rev. B. 71, 180503 (2005). (R).

    Article  Google Scholar 

  14. Gu, Y., Halasz, G. B., Robinson, J. W. A. & Blamire, M. G. Large superconducting spin valve effect and ultrasmall exchange splitting in epitaxial rare-earth-niobium trilayers. Phys. Rev. Lett. 115, 067201 (2015).

    Article  Google Scholar 

  15. Yu, A., Rusanov, S., Habraken, S. & Aarts, J. Inverse spin switch effects in ferromagnet-superconductor-ferromagnet trilayers with strong ferromagnets. Phys. Rev. B. 73, 060505 (2006).

    Article  Google Scholar 

  16. Hu, T. et al. Stray field and spin-imbalance effects in La0.7Ca0.3MnO3/YBa2Cu3O7-δ multilayers. Physica 430B, 1167–1169 (2008).

    Article  Google Scholar 

  17. Van Zalk, M., Veldhorst, M., Brinkman, A., Aarts, J. & Hilgenkamp, H. Magnetization-induced resistance-switching effects in La0.67Sr0.33MnO3/YBa2Cu3O7-δ. Phys. Rev. B. 79, 134509 (2009).

    Article  Google Scholar 

  18. Steiner, R. & Ziemann, P. Magnetic switching of the superconducting transition temperature in layered ferromagnetic/ superconducting hybrids: spin switch versus stray field effects. Phys. Rev. B. 74, 094504 (2006).

    Article  Google Scholar 

  19. Peña, V. et al. Giant magnetoresistance in ferromagnet/superconductor superlattices. Phys. Rev. Lett. 94, 057002 (2005).

    Article  Google Scholar 

  20. Nemes, N. et al. Origin of the inverse spin-switch behavior in manganite/cuprate/manganite trilayers. Phys. Rev. B. 78, 094515 (2008).

    Article  Google Scholar 

  21. Pang, B. S. H., Bell, C., Tomov, R. I., Durrell, J. H. & Blamire, M. G. Pseudo-spin valve behavior in oxide ferromagnet/superconductor/ferromagnet trilayers. Phys. Lett. A. 341, 313 (2005).

    Article  CAS  Google Scholar 

  22. Visani, C. et al. Spin-dependent magnetoresistance of ferromagnet/superconductor/ferromagnet La0.7Ca0.3MnO3/YBa2Cu3O7-δ/La0.7Ca0.3MnO3 trilayers. Phys. Rev. B. 75, 054501 (2007).

    Article  Google Scholar 

  23. Welp, U., Kwok, W. K., Crabtree, G. W., Vandervoort, K. G. & Liu, J. Z. Magnetic measurements of the upper critical field of YBa2Cu3O7-δ single crystals. Phys. Rev. Lett. 62, 1908–1911 (1989).

    Article  CAS  Google Scholar 

  24. Komori, S., Di Bernardo, A., Buzdin, A. I., Blamire, M. G. & Robinson, J. W. A. Magnetic exchange fields and domain wall superconductivity at an all-oxide superconductor/ferromagnetic insulator interface. Phys. Rev. Lett. 121, 077003 (2018).

    Article  CAS  Google Scholar 

  25. Wu, G. et al. Superconducting anisotropy in the electron-doped high-Tc superconductors Pr2-xCexCuO4-y. J. Phys.: Condens. Matter 28, 405701 (2014).

    Google Scholar 

  26. Dagan, Y., Beck, R. & Greene, R. L. Dirty superconductivity in the electron-doped cuprate Pr2-xCexCuO4-δ tunnelling study. Phys. Rev. Lett. 99, 147004 (2007).

    Article  CAS  Google Scholar 

  27. Kalcheim, Y. et al. Magnetic field dependence of the proximity-induced triplet superconductivity at ferromagnet/superconductor interfaces. Phys. Rev. B. 89, 180506 (2014).

    Article  Google Scholar 

  28. Cacovich, S. et al. Unveiling the chemical composition of halide perovskite films using multivariate statistical analysis. ACS Appl. Energy Mater. 1, 7174–7182 (2018).

    Article  CAS  Google Scholar 

  29. Dho, J. et al. Two ferromagnetic transitions in Pr0.8Ca0.2MnO3. Solid State Commun. 123, 441–444 (2002).

    Article  CAS  Google Scholar 

  30. Guiblin, N., Grebille, D., Martin, C. & Hervieu, M. Praseodymium magnetic contribution in the low temperature structure of Pr0.8Ca0.2MnO3. J. Solid State Chem. 177, 3310–3315 (2004).

    Article  CAS  Google Scholar 

  31. Peña, V. et al. Spin diffusion versus proximity effect at ferromagnet/superconductor La0.7Ca0.3MnO3/YBa2Cu3O7-δ interfaces. Phys. Rev. B. 73, 104513 (2006).

    Article  Google Scholar 

  32. Sefrioui, Z. et al. Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3/YBa2Cu3O7-δ superlattices. Phys. Rev. B. 67, 214511 (2003).

    Article  Google Scholar 

  33. Kosztin, I. & Legget, A. J. Nonlocal effects on the magnetic penetration depth in d-wave superconductors. Phys. Rev. Lett. 79, 135–138 (1997).

    Article  CAS  Google Scholar 

  34. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.D.B., S.K. and J.W.A.R. acknowledge funding from the EPSRC through the International Network grant no. EP/N017242/1. A.D.B. acknowledges funding from St John’s College, Cambridge. J.W.A.R. acknowledges funding from the Royal Society.

Author information

Authors and Affiliations

Authors

Contributions

J.W.A.R. supervised the project and with A.D.B. conceived and designed it. A.D.B. prepared the samples and performed electrical and magnetic measurements with help from S.K. TEM imaging and compositional analysis were performed by G.D. The theoretical model was developed by M.C and P.G. with support from G.L. and input from A.D.B. and J.W.A.R. The paper was written by A.D.B., J.W.A.R. and M.C. with input from all authors.

Corresponding authors

Correspondence to A. Di Bernardo or J. W. A. Robinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Notes 1–4 and refs. 1–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Bernardo, A., Komori, S., Livanas, G. et al. Nodal superconducting exchange coupling. Nat. Mater. 18, 1194–1200 (2019). https://doi.org/10.1038/s41563-019-0476-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0476-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing