Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer

Abstract

Bistable electrochromic materials have been explored as a viable alternative to reduce energy consumption in display applications. However, the development of ideal bistable electrochromic displays (especially multicolour displays) remains challenging due to the intrinsic limitations associated with existing electrochromic processes. Here, a bistable electrochromic device with good overall performance—including bistability (>52 h), reversibility (>12,000 cycles), colouration efficiency (≥1,240 cm2 C−1) and transmittance change (70%) with fast switching (≤1.5 s)—was designed and developed based on concerted intramolecular proton-coupled electron transfer. This approach was used to develop black, magenta, yellow and blue displays as well as a multicolour bistable electrochromic shelf label. The design principles derived from this unconventional exploration of concerted intramolecular proton-coupled electron transfer may also be useful in different optoelectronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of electrochromic materials based on intramolecular PCET.
Fig. 2: Investigation of the concerted intramolecular PCET mechanism.
Fig. 3: Optimization of the solid-state electrochromic devices.
Fig. 4: Electrochromic performance of the solid-state device.
Fig. 5: Applications of electrochromic devices.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and the Supplementary Information and from the corresponding authors on reasonable request.

References

  1. Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H. & Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nat. Mater. 1, 64–68 (2002).

    CAS  Google Scholar 

  2. Comiskey, B., Albert, J. D., Yoshizawa, H. & Jacobson, J. An electrophoretic ink for all-printed reflective electronic displays. Nature 394, 253–255 (1998).

    CAS  Google Scholar 

  3. Chen, Y. et al. Electronic paper: Flexible active-matrix electronic ink display. Nature 423, 136 (2003).

    CAS  Google Scholar 

  4. Beaujuge, P. M., Ellinger, S. & Reynolds, J. R. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat. Mater. 7, 795–799 (2008).

    CAS  Google Scholar 

  5. Grätzel, M. Materials science: ultrafast colour displays. Nature 409, 575–576 (2001).

    Google Scholar 

  6. Shi, P. et al. Broadly absorbing black to transmissive switching electrochromic polymers. Adv. Mater. 22, 4949–4953 (2010).

    CAS  Google Scholar 

  7. Beaujuge, P. M. & Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 110, 268–320 (2010).

    CAS  Google Scholar 

  8. Jensen, J., Hösel, M., Dyer, A. L. & Krebs, F. C. Development and manufacture of polymer-based electrochromic devices. Adv. Funct. Mater. 25, 2073–2090 (2015).

    CAS  Google Scholar 

  9. Llordés, A., Garcia, G., Gazquez, J. & Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013).

    Google Scholar 

  10. Beaujuge, P. M., Amb, C. M. & Reynolds, J. R. Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res. 43, 1396–1407 (2010).

    CAS  Google Scholar 

  11. Cai, G. et al. Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem. Sci. 7, 1373–1382 (2016).

    CAS  Google Scholar 

  12. Elool Dov, N. et al. Electrochromic metallo-organic nanoscale films: fabrication, color range, and devices. J. Am. Chem. Soc. 139, 11471–11481 (2017).

    CAS  Google Scholar 

  13. Shankar, S., Lahav, M. & Van Der Boom, M. E. Coordination-based molecular assemblies as electrochromic materials: ultra-high switching stability and coloration efficiencies. J. Am. Chem. Soc. 137, 4050–4053 (2015).

    CAS  Google Scholar 

  14. Thakur, V. K., Ding, G., Ma, J., Lee, P. S. & Lu, X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 24, 4071–4096 (2012).

    CAS  Google Scholar 

  15. Christiansen, D. T., Tomlinson, A. L. & Reynolds, J. R. New design paradigm for color control in anodically coloring electrochromic molecules. J. Am. Chem. Soc. 141, 3859–3862 (2019).

    CAS  Google Scholar 

  16. Hernandez, T. S. et al. Bistable black electrochromic windows based on the reversible metal electrodeposition of Bi and Cu. ACS Energy Lett. 3, 104–111 (2018).

    CAS  Google Scholar 

  17. Mortimer, R. J., Dyer, A. L. & Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 27, 2–18 (2006).

    CAS  Google Scholar 

  18. Zhang, S., Cao, S., Zhang, T., Fisher, A. & Lee, J. Y. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11, 2884–2892 (2018).

    CAS  Google Scholar 

  19. Shin, H. et al. Energy saving electrochromic windows from bistable low-HOMO level conjugated polymers. Energy Environ. Sci. 9, 117–122 (2016).

    CAS  Google Scholar 

  20. Kim, Y. et al. Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer. Adv. Funct. Mater. 27, 1701192 (2017).

    Google Scholar 

  21. Cai, G., Darmawan, P., Cheng, X. & Lee, P. S. Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 7, 1602598 (2017).

    Google Scholar 

  22. Zhang, Y.-M. et al. A new class of “electro-acid/base”-induced reversible methyl ketone color switches. J. Mater. Chem. C 1, 5309–5314 (2013).

    CAS  Google Scholar 

  23. Zhang, Y.-M. et al. Highly durable colour/emission switching of fluorescein in a thin film device using “electro-acid/base” as in situ stimuli. Chem. Commun. 50, 1420–1422 (2014).

    CAS  Google Scholar 

  24. Zhang, Y.-M. et al. A single-molecule multicolor electrochromic device generated through medium engineering. Light Sci. Appl. 4, e249 (2015).

    CAS  Google Scholar 

  25. Zhang, W. et al. Bio-inspired ultra-high energy efficiency bistable electronic billboard and reader. Nat. Commun. 10, 1559 (2019).

    Google Scholar 

  26. Wang, X. et al. Reversible bond/cation-coupled electron transfer on phenylenediamine-based rhodamine B and its application on electrochromism. ACS Appl. Mater. Interf. 9, 20196–20204 (2017).

    CAS  Google Scholar 

  27. Meyer, T. J., Huynh, M. H. V. & Thorp, H. H. The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew. Chem. Int. Ed. 46, 5284–5304 (2007).

    CAS  Google Scholar 

  28. Mora, S. J. et al. Proton-coupled electron transfer in artificial photosynthetic systems. Acc. Chem. Res. 51, 445–453 (2018).

    CAS  Google Scholar 

  29. Hammes-Schiffer, S. Theory of proton-coupled electron transfer in energy conversion processes. Acc. Chem. Res. 42, 1881–1889 (2009).

    CAS  Google Scholar 

  30. Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

    CAS  Google Scholar 

  31. Yayla, H. G., Wang, H., Tarantino, K. T., Orbe, H. S. & Knowles, R. R. Catalytic ring-opening of cyclic alcohols enabled by PCET activation of strong O-H bonds. J. Am. Chem. Soc. 138, 10794–10797 (2016).

    CAS  Google Scholar 

  32. Costentin, C., Robert, M., Savéant, J.-M. & Tard, C. Inserting a hydrogen-bond relay between proton exchanging sites in proton-coupled electron transfers. Angew. Chem. Int. Ed. 49, 3803–3806 (2010).

    CAS  Google Scholar 

  33. Kamiya, N. & Shen, J. R. Crystal structure of oxygen-evolving photosystem II from thermosynechococcus vulcanus at 3.7-Å resolution. Proc. Natl Acad. Sci. 100, 98–103 (2003).

    CAS  Google Scholar 

  34. Savéant, J. M. & Tard, C. Proton-coupled electron transfer in azobenzene/hydrazobenzene couples with pendant acid-base functions. hydrogen-bonding and structural effects. J. Am. Chem. Soc. 136, 8907–8910 (2014).

    Google Scholar 

  35. Li, K. et al. Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex. J. Am. Chem. Soc. 136, 1643–1649 (2014).

    CAS  Google Scholar 

  36. Li, G., Mark, M. F., Lv, H., McCamant, D. W. & Eisenberg, R. Rhodamine-platinum diimine dithiolate complex dyads as efficient and robust photosensitizers for light-driven aqueous proton reduction to hydrogen. J. Am. Chem. Soc. 140, 2575–2586 (2018).

    CAS  Google Scholar 

  37. Liu, Y. et al. Catalytically active single-chain polymeric nanoparticles: exploring their functions in complex biological media. J. Am. Chem. Soc. 140, 3423–3433 (2018).

    CAS  Google Scholar 

  38. Clare, L. A. et al. Electrochemical evidence for intermolecular proton-coupled electron transfer through a hydrogen bond complex in a p-phenylenediamine-based urea. Introduction of the “Wedge Scheme” as a useful means to describe reactions of this type. J. Am. Chem. Soc. 135, 18930–18941 (2013).

    CAS  Google Scholar 

  39. Markle, T. F. & Mayer, J. M. Concerted proton–electron transfer in pyridylphenols: the importance of the hydrogen bond. Angew. Chem. Int. Ed. 47, 738–740 (2008).

    CAS  Google Scholar 

  40. Bonin, J., Costentin, C., Robert, M., Savéant, J.-M. & Tard, C. Hydrogen-bond relays in concerted proton–electron transfers. Acc. Chem. Res. 45, 372–381 (2012).

    CAS  Google Scholar 

  41. Gau, V. et al. Electrochemical molecular analysis without nucleic acid amplification. Methods 37, 73–83 (2005).

    CAS  Google Scholar 

  42. Sharp, M., Petersson, M. & Edström, K. A comparison of the charge transfer kinetics between platinum and ferrocene in solution and in the surface attached state. J. Electroanal. Chem. Interf. Electrochem. 109, 271–288 (1980).

    CAS  Google Scholar 

  43. Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interf. Electrochem. 101, 19–28 (1979).

    CAS  Google Scholar 

  44. Xi, G. et al. Water assisted biomimetic synergistic process and its application in water-jet rewritable paper. Nat. Commun. 9, 4819 (2018).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (grant nos. 21602075, 21875087) and the programme for JLU Science and Technology Innovative Research Team and Young Elite Scientist Sponsorship Program by Jilin Province of China (181903).

Author information

Authors and Affiliations

Authors

Contributions

Y.-M.Z., S.X.-A.Z., Y.W., S.W. and X.W. conceived this project. Y.W., S.W., X.W. and Y.-M.Z. designed the experiments. Y.W., S.W., X.W., W.Zhang and W.Zheng performed the experiments. Y.W., S.W., X.W. and W.Zheng synthesized the materials. Y.W. and X.W. researched the mechanism. Y.W. and W.Zhang fabricated the devices. Y.W., S.W., Y.-M.Z. and S.X.-A.Z. analysed the results. Y.W., Y.-M.Z. and S.X.-A.Z. wrote and revised the manuscript. The project was planned, directed and supervised by S.X.-A.Z. and Y.-M.Z. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Yu-Mo Zhang or Sean Xiao-An Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–49, Tables 1–6, Notes 1 and 2, Methods 1–6, Schemes 1–7, Video Legends 1 and 2 and refs. 1–30.

Supplementary Video 1

Bistable electronic shelf label display.

Supplementary Video 2

Multicolour bistable electronic shelf label display.

Crystallographic Information Files

Crystallographic information for M1, M2 and M3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, S., Wang, X. et al. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nat. Mater. 18, 1335–1342 (2019). https://doi.org/10.1038/s41563-019-0471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0471-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing