Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets


Room-temperature skyrmions in ferromagnetic films and multilayers show promise for encoding information bits in new computing technologies. Despite recent progress, ferromagnetic order generates dipolar fields that prevent ultrasmall skyrmion sizes, and allows a transverse deflection of moving skyrmions that hinders their efficient manipulation. Antiferromagnetic skyrmions shall lift these limitations. Here we demonstrate that room-temperature antiferromagnetic skyrmions can be stabilized in synthetic antiferromagnets (SAFs), in which perpendicular magnetic anisotropy, antiferromagnetic coupling and chiral order can be adjusted concurrently. Utilizing interlayer electronic coupling to an adjacent bias layer, we demonstrate that spin-spiral states obtained in a SAF with vanishing perpendicular magnetic anisotropy can be turned into isolated antiferromagnetic skyrmions. We also provide model-based estimates of skyrmion size and stability, showing that room-temperature antiferromagnetic skyrmions below 10 nm in radius can be anticipated in further optimized SAFs. Antiferromagnetic skyrmions in SAFs may thus solve major issues associated with ferromagnetic skyrmions for low-power spintronic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: SAF in different configurations.
Fig. 2: Elaboration of (Pt/Co/Ru) multilayers and BL to obtain an optimized biased SAF.
Fig. 3: Room-temperature MFM observation of magnetization textures in SAFs.
Fig. 4: Quantitative analysis of MFM signal (phase offset in lift mode).
Fig. 5: Evaluation of sizes and energies of antiferromagnetic skyrmions in the BL-SAF system.

Data availability

All relevant data presented in the manuscript and in the Supplementary Information supporting the findings of this study are available from the corresponding authors upon request.


  1. 1.

    Bogdanov, A. N. & Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001).

    CAS  Google Scholar 

  2. 2.

    Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Google Scholar 

  3. 3.

    Dzyaloshinsky, I. A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    CAS  Google Scholar 

  4. 4.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    CAS  Google Scholar 

  5. 5.

    Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    CAS  Google Scholar 

  6. 6.

    Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403 (2008).

    Google Scholar 

  7. 7.

    Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rößler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J. Phys. D 44, 392001 (2011).

    Google Scholar 

  8. 8.

    Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mat. 2, 17031 (2017).

    CAS  Google Scholar 

  9. 9.

    Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    CAS  Google Scholar 

  10. 10.

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    CAS  Google Scholar 

  11. 11.

    Legrand, W. et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

    CAS  Google Scholar 

  12. 12.

    Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotechnol. 12, 1040–1044 (2017).

    Google Scholar 

  13. 13.

    Woo, S. et al. Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy. Nat. Electron. 1, 288–296 (2018).

    Google Scholar 

  14. 14.

    Hrabec, A. et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).

    CAS  Google Scholar 

  15. 15.

    Maccariello, D. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol. 13, 233–237 (2018).

    CAS  Google Scholar 

  16. 16.

    Zeissler, K. et al. Discrete hall resistivity contribution from néel skyrmions in multilayer nanodiscs. Nature Nanotechnol. 13, 1161–1166 (2018).

    CAS  Google Scholar 

  17. 17.

    Büttner, F., Lemesh, I. & Beach, G. S. D. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci. Rep. 8, 4464 (2018).

    Google Scholar 

  18. 18.

    Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    CAS  Google Scholar 

  19. 19.

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    CAS  Google Scholar 

  20. 20.

    Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    Google Scholar 

  21. 21.

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    CAS  Google Scholar 

  22. 22.

    Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    CAS  Google Scholar 

  23. 23.

    Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    CAS  Google Scholar 

  24. 24.

    Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).

    CAS  Google Scholar 

  25. 25.

    Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013).

    CAS  Google Scholar 

  26. 26.

    Woo, S. et al. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nat. Commun. 9, 959 (2018).

    Google Scholar 

  27. 27.

    Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    CAS  Google Scholar 

  28. 28.

    Parkin, S. S. P., Bhadra, R. & Roche, K. P. Oscillatory magnetic exchange coupling through thin copper layers. Phys. Rev. Lett. 66, 2152–2155 (1991).

    CAS  Google Scholar 

  29. 29.

    Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6, 24795 (2016).

    CAS  Google Scholar 

  30. 30.

    Hellwig, O., Kirk, T. L., Kortright, J. B., Berger, A. & Fullerton, E. E. A new phase diagram for layered antiferromagnetic films. Nat. Mater. 2, 112–116 (2003).

    CAS  Google Scholar 

  31. 31.

    Hervé, M. et al. Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy. Nat. Commun. 9, 1015 (2018).

    Google Scholar 

  32. 32.

    Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii–Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402 (2014).

    Google Scholar 

  33. 33.

    Belmeguenai, M. et al. Interface Dzyaloshinskii–Moriya interaction in the interlayer antiferromagnetic-exchange coupled Pt/CoFeB/Ru/CoFeB systems. Phys. Rev. B 96, 144402 (2017).

    Google Scholar 

  34. 34.

    Bloemen, P. J. H., van Kesteren, H. W., Swagten, H. J. M. & de Jonge, W. J. M. Oscillatory interlayer exchange coupling in Co/Ru multilayers and bilayers. Phys. Rev. B 50, 13505–13514 (1994).

    CAS  Google Scholar 

  35. 35.

    Lavrijsen, R. et al. Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493, 647–650 (2013).

    CAS  Google Scholar 

  36. 36.

    Bandiera, S., Sousa, R. C., Auffret, S., Rodmacq, B. & Dieny, B. Enhancement of perpendicular magnetic anisotropy thanks to Pt insertions in synthetic antiferromagnets. Appl. Phys. Lett. 101, 072410 (2012).

    Google Scholar 

  37. 37.

    Lavrijsen, R. et al. Tuning the interlayer exchange coupling between single perpendicularly magnetized CoFeB layers. Appl. Phys. Lett. 100, 052411 (2012).

    Google Scholar 

  38. 38.

    Yakushiji, K. et al. Ultrathin Co/Pt and Co/Pd superlattice films for MgO-based perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 97, 232508 (2010).

    Google Scholar 

  39. 39.

    Moritz, J., Garcia, F., Toussaint, J. C., Dieny, B. & Nozières, J. P. Orange peel coupling in multilayers with perpendicular magnetic anisotropy: application to (Co/Pt)-based exchange-biased spin-valves. Europhys. Lett. 65, 123–129 (2004).

    CAS  Google Scholar 

  40. 40.

    Hellwig, O., Berger, A. & Fullerton, E. E. Domain walls in antiferromagnetically coupled multilayer films. Phys. Rev. Lett. 91, 197203 (2003).

    Google Scholar 

  41. 41.

    Legrand, W. et al. Modeling the shape of axisymmetric skyrmions in magnetic multilayers. Phys. Rev. Appl. 10, 064042 (2018).

    CAS  Google Scholar 

  42. 42.

    Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Google Scholar 

  43. 43.

    Rohart, S., Miltat, J. & Thiaville, A. Path to collapse for an isolated néel skyrmion. Phys. Rev. B 93, 214412 (2016).

    Google Scholar 

  44. 44.

    Legrand, W. et al. Hybrid chiral domain walls and skyrmions in magnetic multilayers. Sci. Adv. 4, eaat0415 (2018).

    CAS  Google Scholar 

  45. 45.

    Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotechnol. 10, 1039–1042 (2015).

    CAS  Google Scholar 

  46. 46.

    Crum, D. M. et al. Perpendicular reading of single confined magnetic skyrmions. Nat. Commun. 6, 8541 (2015).

    CAS  Google Scholar 

  47. 47.

    Bessarab, P. F. et al. Lifetime of racetrack skyrmions. Sci. Rep. 8, 3433 (2018).

    Google Scholar 

  48. 48.

    Bessarab, P. F. et al. Stability and lifetime of antiferromagnetic skyrmions. Phys. Rev. B 99, 140411 (2019).

    CAS  Google Scholar 

  49. 49.

    Wild, J. et al. Entropy-limited topological protection of skyrmions. Sci. Adv. 3, e1701704 (2017).

    Google Scholar 

  50. 50.

    Belavin, A. & Polyakov, A. Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 22, 245–248 (1975).

    Google Scholar 

Download references


The authors thank Y. Sassi for his participation to additional experiments included in the Supplementary Information and W. Akhtar, A. Finco, S. Chouaieb and V. Jacques for discussions about the magnetic imaging of SAFs. Financial support from the Agence Nationale de la Recherche, France, under grant agreement no. ANR-17-CE24-0025 (TOPSKY), the Horizon2020 Framework Programme of the European Commission under FET-Proactive Grant agreement no. 824123 (SKYTOP) and FET-Open grant agreement no. 665095 (MAGicSky), and the DARPA TEE programme through grant MIPR no. HR0011831554 is acknowledged.

Author information




W.L., N.R., V.C. and A.F. conceived the project. W.L. deposited the multilayered films, with the help of S.C. and F.A. W.L. and F.A. performed the magnetic characterization of the SAFs and optimization of the magnetic properties. W.L., D.M. and F.A. performed the MFM experiments, with the help of K.B. and A.V. W.L. performed the micromagnetic simulations. W.L., N.R. and V.C. prepared the manuscript, and all authors discussed and contributed to the final manuscript.

Corresponding authors

Correspondence to William Legrand or Vincent Cros.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12, Supplementary Figs. 1–26, Supplementary Tables 1–7 and Supplementary refs. 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Legrand, W., Maccariello, D., Ajejas, F. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing