Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas

Abstract

While spintronics has traditionally relied on ferromagnetic metals as spin generators and detectors, spin–orbitronics exploits the efficient spin–charge interconversion enabled by spin–orbit coupling in non-magnetic systems. Although the Rashba picture of split parabolic bands is often used to interpret such experiments, it fails to explain the largest conversion effects and their relationship with the electronic structure. Here, we demonstrate a very large spin-to-charge conversion effect in an interface-engineered, high-carrier-density SrTiO3 two-dimensional electron gas and map its gate dependence on the band structure. We show that the conversion process is amplified by enhanced Rashba-like splitting due to orbital mixing and in the vicinity of avoided band crossings with topologically non-trivial order. Our results indicate that oxide two-dimensional electron gases are strong candidates for spin-based information readout in new memory and transistor designs. Our results also emphasize the promise of topology as a new ingredient to expand the scope of complex oxides for spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of AlOx/STO 2D electron gases.
Fig. 2: Magnetotransport properties.
Fig. 3: Spin–charge conversion in NiFe/AlOx/STO.
Fig. 4: Electronic and spin structure of the 2DEG.
Fig. 5: Energy dependence of the spin–charge conversion.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

The self-written code that generated the data for Figs. 4f,g and 5b,c is available from A.J. upon reasonable request.

References

  1. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

    Google Scholar 

  2. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  CAS  Google Scholar 

  3. Edelstein, V. M. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  Google Scholar 

  4. Rojas-Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013).

    Article  Google Scholar 

  5. Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).

    Article  Google Scholar 

  6. Han, W., Otani, Y. & Maekawa, S. Quantum materials for spin and charge conversion. npj Quantum Mater. 3, 27 (2018).

    Article  Google Scholar 

  7. Johansson, A., Henk, J. & Mertig, I. Edelstein effect in Weyl semimetals. Phys. Rev. B 97, 085417 (2018).

    Article  CAS  Google Scholar 

  8. Zhang, S. & Fert, A. Conversion between spin and charge currents with topological insulators. Phys. Rev. B 94, 184423 (2016).

    Article  Google Scholar 

  9. Shen, K., Vignale, G. & Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 112, 096601 (2014).

    Article  Google Scholar 

  10. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    Article  CAS  Google Scholar 

  11. Seibold, G., Caprara, S., Grilli, M. & Raimondi, R. Theory of the spin galvanic effect at oxide interfaces. Phys. Rev. Lett. 119, 256801 (2017).

    Article  Google Scholar 

  12. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  13. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

  14. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  15. Lesne, E. et al. Suppression of the critical thickness threshold for conductivity at the LaAlO3/SrTiO3 interface. Nat. Commun. 5, 4291 (2014).

    Article  CAS  Google Scholar 

  16. Vaz, D. C. et al. Tuning up or down the critical thickness in LaAlO3/SrTiO3 through in situ deposition of metal overlayers. Adv. Mater. 29, 1700486 (2017).

    Article  Google Scholar 

  17. Rödel, T. C. et al. Universal fabrication of 2D electron systems in functional oxides. Adv. Mater. 28, 1976–1980 (2016).

    Article  Google Scholar 

  18. Posadas, A. B. et al. Scavenging of oxygen from SrTiO3 during oxide thin film deposition and the formation of interfacial 2DEG. J. Appl. Phys. 121, 105302 (2017).

  19. Sing, M. et al. Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard X-Ray photoelectron spectroscopy. Phys. Rev. Lett. 102, 176805 (2009).

    Article  CAS  Google Scholar 

  20. Hurand, S. et al. Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices. Sci. Rep. 5, 12751 (2015).

    Article  CAS  Google Scholar 

  21. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  22. Rojas-Sánchez, J.-C. et al. Spin pumping and inverse spin Hall effect in germanium. Phys. Rev. B 88, 064403 (2013).

    Article  Google Scholar 

  23. Pham, V. T. et al. Ferromagnetic/nonmagnetic nanostructures for the electrical measurement of the spin Hall effect. Nano Lett. 16, 6755–6760 (2016).

    Article  CAS  Google Scholar 

  24. Noel, P. et al. Highly efficient spin-to-charge current conversion in strained HgTe surface states protected by a HgCdTe layer. Phys. Rev. Lett. 120, 167201 (2018).

    Article  CAS  Google Scholar 

  25. Mendes, J. B. S. et al. Dirac-surface-state-dominated spin to charge current conversion in the topological insulator (Bi0.22Sb0.78)2Te3 films at room temperature. Phys. Rev. B 96, 180415 (2017).

    Article  Google Scholar 

  26. Karube, S., Kondou, K. & Otani, Y. Experimental observation of spin-to-charge current conversion at non-magnetic metal/Bi2O3 interfaces. Appl. Phys. Express 9, 033001 (2016).

    Article  Google Scholar 

  27. King, P. D. C. et al. Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas. Nat. Commun. 5, 3414 (2014).

    Article  CAS  Google Scholar 

  28. Zhong, Z., Tóth, A. & Held, K. Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces. Phys. Rev. B 87, 161102 (2013).

    Article  Google Scholar 

  29. Khalsa, G. & MacDonald, A. H. Theory of the SrTiO3 surface state two-dimensional electron gas. Phys. Rev. B 86, 125121 (2012).

    Article  Google Scholar 

  30. McKeown Walker, S. et al. Carrier-density control of the SrTiO3 (001) surface 2D electron gas studied by ARPES. Adv. Mater. 27, 3894–3899 (2015).

    Article  Google Scholar 

  31. Vivek, M., Goerbig, M. O. & Gabay, M. Topological states at the (001) surface of SrTiO3. Phys. Rev. B 95, 165117 (2017).

    Article  Google Scholar 

  32. Zhong, Z., Tóth, A. & Held, K. Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3. Phys. Rev. B 87, 161102 (2013).

    Article  Google Scholar 

  33. Kim, J. et al. Evaluation of bulk-interface contributions to Edelstein magnetoresistance at metal/oxide interfaces. Phys. Rev. B 96, 140409 (2017).

    Article  Google Scholar 

  34. Dey, R., Prasad, N., Register, L. F. & Banerjee, S. K. Conversion of spin current into charge current in a topological insulator: Role of the interface. Phys. Rev. B 97, 174406 (2018).

    Article  CAS  Google Scholar 

  35. Herranz, G. et al. High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. Phys. Rev. Lett. 98, 216803 (2007).

    Article  CAS  Google Scholar 

  36. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    Article  CAS  Google Scholar 

  37. Sagasta, E. et al. Tuning the spin Hall effect of Pt from the moderately dirty to the superclean regime. Phys. Rev. B 94, 060412(R) (2016).

    Article  Google Scholar 

  38. Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    Article  CAS  Google Scholar 

  39. Varignon, J., Vila, L., Barthélémy, A. & Bibes, M. A new spin for oxide interfaces. Nat. Phys. 14, 322–325 (2018).

    Article  CAS  Google Scholar 

  40. Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work received support from the ERC Consolidator Grant no. 615759 ‘MINT’, the QUANTERA project ‘QUANTOX’, the French ANR programme through projects OISO (ANR-17-CE24-0026-03), TOPRISE (ANR-16-CE24-0017) and the Laboratoire d’Excellence LANEF (ANR-10-LABX-51-01). M.B. thanks the Alexander von Humboldt Foundation for supporting his stays at Martin-Luther-Universität Halle. F.T. acknowledges support by research grant no. VKR023371 (SPINOX) from VILLUM FONDEN. A.J., B.G. and I.M. acknowledge support by Priority Program SPP 1666 and SFB 762 of Deutsche Forschungsgemeinschaft. D.C.V. thanks the French Ministry of Higher Education and Research and CNRS for financing his PhD thesis. We thank H. Jaffrès for insightful comments on tunnel escape times, M. Sing for his help with XPS analysis and E. Schierle for his assistance with X-ray absorption spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

M.B. proposed and supervised the study with help from L.V., J.-P.A., A.B. and A.F. D.C.V. prepared the samples with the help of F.T. and L.M.V.-A. and performed XPS experiments and analysed the data with A.S. D.C.V., G.S. and N.B. measured the magnetotransport properties and analysed the results. H.O. prepared the samples for STEM and EELS and performed the observations and spectroscopy measurements. S.V. performed the X-ray absorption measurements and analysed the data. S.M.-W., F.Y.B. and F.B. performed the ARPES measurements and their analysis. P.N. performed the spin-pumping experiments and analysed the data with D.C.V., L.V., J.-P.A. and M.B. P.B., M.V. and M.G. conducted the Poisson–Schrödinger calculations. A.J. and B.G. performed the tight-binding and Boltzmann calculations under the supervision of I.M., with input from M.V., M.G. and M.B. D.C.V. and M.B. wrote the manuscript with input from all authors. All authors discussed the results and contributed to their interpretation.

Corresponding authors

Correspondence to Laurent Vila or Manuel Bibes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Notes 1–12 and refs. 1–13

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaz, D.C., Noël, P., Johansson, A. et al. Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nat. Mater. 18, 1187–1193 (2019). https://doi.org/10.1038/s41563-019-0467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0467-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing