Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization

Abstract

Nanolaminate membranes made of two-dimensional materials such as graphene oxide are promising candidates for molecular sieving via size-limited diffusion in the two-dimensional capillaries, but high hydrophilicity makes these membranes unstable in water. Here, we report a nanolaminate membrane based on covalently functionalized molybdenum disulfide (MoS2) nanosheets. The functionalized MoS2 membranes demonstrate >90% and ~87% rejection for micropollutants and NaCl, respectively, when operating under reverse osmotic conditions. The sieving performance and water flux of the functionalized MoS2 membranes are attributed both to control of the capillary widths of the nanolaminates and to control of the surface chemistry of the nanosheets. We identify small hydrophobic functional groups, such as the methyl group, as the most promising for water purification. Methyl- functionalized nanosheets show high water permeation rates as confirmed by our molecular dynamic simulations, while maintaining high NaCl rejection. Control of the surface chemistry and the interlayer spacing therefore offers opportunities to tune the selectivity of the membranes while enhancing their stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanolaminate membranes made of covalently functionalized MoS2 nanosheets.
Fig. 2: Characterization of the functionalized MoS2 membranes.
Fig. 3: Performance of the functionalized MoS2 membranes towards water purification and desalination.
Fig. 4: MD simulations of water transport in 2D nanochannels.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    Article  CAS  Google Scholar 

  2. Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    Article  CAS  Google Scholar 

  3. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  Google Scholar 

  4. Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article  CAS  Google Scholar 

  5. Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

    Article  CAS  Google Scholar 

  6. Hirunpinyopas, W. et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 11, 11082–11090 (2017).

    Article  CAS  Google Scholar 

  7. Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).

    Article  CAS  Google Scholar 

  8. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  CAS  Google Scholar 

  9. Koltonow, A. R. & Huang, J. Two-dimensional nanofluidics. Science 351, 1395–1396 (2016).

    Article  CAS  Google Scholar 

  10. Wei, N., Peng, X. & Xu, Z. Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 6, 5877–5883 (2014).

    Article  CAS  Google Scholar 

  11. Wei, N., Peng, X. & Xu, Z. Breakdown of fast water transport in graphene oxides. Phys. Rev. E 89, 012113 (2014).

    Article  Google Scholar 

  12. Sun, L., Huang, H. & Peng, X. Laminar MoS2 membranes for molecule separation. Chem. Commun. 49, 10718–10720 (2013).

    Article  CAS  Google Scholar 

  13. Sun, L. et al. Ultrafast molecule separation through layered WS2 nanosheet membranes. ACS Nano 8, 6304–6311 (2014).

    Article  CAS  Google Scholar 

  14. Wang, Z. et al. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017).

    Article  CAS  Google Scholar 

  15. Deng, M., Kwac, K., Li, M., Jung, Y. & Park, H. G. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett. 17, 2342–2348 (2017).

    Article  CAS  Google Scholar 

  16. Achari, A., Sahana, S. & Eswaramoorthy, M. High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency. Energy Environ. Sci. 9, 1224–1228 (2016).

    Article  CAS  Google Scholar 

  17. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986).

    Article  CAS  Google Scholar 

  18. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  Google Scholar 

  19. Voiry, D. et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 7, 45–49 (2015).

    Article  CAS  Google Scholar 

  20. Wang, H. et al. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 13, 3426–3433 (2013).

    Article  CAS  Google Scholar 

  21. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008).

    Article  CAS  Google Scholar 

  22. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    Article  CAS  Google Scholar 

  23. Yeh, C.-N., Raidongia, K., Shao, J., Yang, Q.-H. & Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat Chem 7, 166–170 (2015).

    Article  CAS  Google Scholar 

  24. Holt, J. K. et al. Fast mass transport through Sub-2-Nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  25. Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    Article  CAS  Google Scholar 

  26. Balme, S. et al. Unexpected ionic transport behavior on hydrophobic and uncharged conical nanopore. Faraday Discuss. 210, 69–85 (2018).

    Article  CAS  Google Scholar 

  27. Balme, S. et al. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation. Sci. Rep. 5, 10135 (2015).

    Article  Google Scholar 

  28. Morelos-Gomez, A. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12, 1083–1088 (2017).

    Article  CAS  Google Scholar 

  29. Han, Y., Jiang, Y. & Gao, C. High-Flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl. Mater. Interfaces 7, 8147–8155 (2015).

    Article  CAS  Google Scholar 

  30. Zhao, G., Hu, R., Zhao, X., He, Y. & Zhu, H. High flux nanofiltration membranes prepared with a graphene oxide homo-structure. J. Membr. Sci. 585, 29–37 (2019).

    Article  CAS  Google Scholar 

  31. van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

    Article  Google Scholar 

  32. Lupkowski, M. & van Swol, F. Computer simulation of fluids interacting with fluctuating walls. J. Chem. Phys. 93, 737–745 (1990).

    Article  Google Scholar 

  33. Kwac, K. et al. Multilayer Two-Dimensional water structure confined in MoS2. J. Phys. Chem. C 121, 16021–16028 (2017).

    Article  CAS  Google Scholar 

  34. Chandra, A. Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions. Phys. Rev. Lett. 85, 768 (2000).

    Article  CAS  Google Scholar 

  35. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  36. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  37. Kim, S.-Y. & van Duin, A. C. T. Simulation of titanium metal/titanium dioxide etching with chlorine and hydrogen chloride gases using the ReaxFF reactive force field. J. Phys. Chem. A 117, 5655–5663 (2013).

    Article  CAS  Google Scholar 

  38. Ostadhossein, A. et al. ReaxFF reactive force-field study of molybdenum disulfide (MoS2). J. Phys. Chem. Lett. 8, 631–640 (2017).

    Article  CAS  Google Scholar 

  39. Plimpton, S. Fast Parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.R. acknowledges scholarship from the Graduate School ‘Ecole doctorale des Sciences Chimiques Balard, ED 459’. D.V. acknowledges financial supports from ‘Project Axe Transverse Santé’ and CNRS Cellule Energie exploratory project ‘NANOSMO’. This project has also received partial funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant no. 804320). The French Région Ile de France – SESAME programme is acknowledged for financial support (700 MHz NMR spectrometer). We thank The Hong Kong Polytechnic University and the Department of Applied Physics for the computational resources. D. Cot and E. Oliviero are acknowledged for support with the electron microscopy. We thank V. Flaud and L. Causse for the X-ray photoelectron spectroscopy and the inductively coupled plasma optical emission spectrometry measurements.

Author information

Authors and Affiliations

Authors

Contributions

D.V. conceived the idea, designed the experiments and wrote the manuscript. L.R. designed the experiments with D.V., fabricated the membranes and performed membrane characterizations and analysed the results. L.R. and D.V. analysed the data and wrote the manuscript. E.P. carried out high-performance liquid chromatography and liquid NMR spectroscopy measurements. T.M. performed Raman spectroscopy measurements with L.R. and discussed the results with D.V. and L.R.. C.C.D. and C.G. performed 13C CAS NMR spectroscopy measurements and C.S. discussed the results with D.V. and L.R.. S.B. and M.B. assisted L.R. on ionic permeation experiments and discussed the water permeation results. N.O. performed the MD simulations and wrote the manuscript with D.V. and L.R. P.M. discussed the results with D.V. and L.R. All of the authors edited the manuscript before submission.

Corresponding authors

Correspondence to Nicolas Onofrio or Damien Voiry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials and methods, Supplementary Figs. 1–43, Supplementary Tables 1–10 and Supplementary refs. 1–57

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ries, L., Petit, E., Michel, T. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019). https://doi.org/10.1038/s41563-019-0464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0464-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing