Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A hybrid material that reversibly switches between two stable solid states

Abstract

Most types of solid matter have a single stable solid state for a particular set of conditions. Nonetheless, materials with distinct, interchangeable solid states would be advantageous for several technological applications. Here, we describe a material composed of a polymer impregnated with a supercooled salt solution, termed as sal-gel, that assumes two distinct but stable and reversible solid states under the same conditions for a range of temperatures (−90 to 58 °C) and pressure. On transient stimulation of nucleation, the material switches from a clear and soft solid to a white and hard state, which can be 104 times stiffer than the original (15 kPa versus 385 MPa). This hard solid becomes soft again by transient heating, demonstrating the reversibility of the transition. This concept, exploiting the robust physical metastability of a liquid state, is extended to sugar alcohols, resulting in a stimuli-responsive and non-evaporating sug-gel. These ‘two-in-one’ solid materials may find potential uses in soft robotics and adhesive applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Material behaviours of sal-gel.
Fig. 2: Mechanical behaviours of sal-gel.
Fig. 3: Crystallization behaviour of sal-gel.
Fig. 4: Applications of sal-gel.
Fig. 5: Practical implications of sal-gel.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are within the Article and its Supplementary Information files and are available from the corresponding author upon reasonable request.

References

  1. Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J. & Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science319, 1370–1374 (2008).

    Article  CAS  Google Scholar 

  2. Jorfi, M., Roberts, M. N., Foster, E. J. & Weder, C. Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications. ACS Appl. Mater. Interfaces5, 1517–1526 (2013).

    Article  CAS  Google Scholar 

  3. Balasubramanian, A., Morhard, R. & Bettinger, C. J. Shape-memory microfluidics. Adv. Funct. Mater.23, 4832–4839 (2013).

    Article  CAS  Google Scholar 

  4. Van Meerbeek, I. M. et al. Morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self-healing soft machines. Adv. Mater.28, 2801–2806 (2016).

    Article  Google Scholar 

  5. Balasubramanian, A., Standish, M. & Bettinger, C. J. Microfluidic thermally activated materials for rapid control of macroscopic compliance. Adv. Funct. Mater.24, 4860–4866 (2014).

    Article  CAS  Google Scholar 

  6. Jin, H.-J. & Weissmüller, J. A material with electrically tunable strength and flow stress. Science332, 1179–1182 (2011).

    Article  CAS  Google Scholar 

  7. Manti, M., Cacucciolo, V. & Cianchetti, M. Stiffening in soft robotics: a review of the state of the art. IEEE Robot. Autom. Mag.23, 93–106 (2016).

    Article  Google Scholar 

  8. Montero De Espinosa, L., Meesorn, W., Moatsou, D. & Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev.117, 12851–12892 (2017).

    Article  CAS  Google Scholar 

  9. Sofla, A. Y. N., Meguid, S. A., Tan, K. T. & Yeo, W. K. Shape morphing of aircraft wing: status and challenges. Mater. Des.31, 1284–1292 (2010).

    Article  CAS  Google Scholar 

  10. Overvelde, J. T. B. et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nat. Commun.7, 10929 (2016).

    Article  CAS  Google Scholar 

  11. Rocklin, D. Z., Zhou, S., Sun, K. & Mao, X. Transformable topological mechanical metamaterials. Nat. Commun.8, 1–9 (2017).

    Article  Google Scholar 

  12. Zhai, Z., Wang, Y. & Jiang, H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc. Natl Acad. Sci. USA115, 2032–2037 (2018).

    Article  CAS  Google Scholar 

  13. Worrell, B. T. et al. Bistable and photoswitchable states of matter. Nat. Commun.9, 2804 (2018).

    Article  Google Scholar 

  14. Gu, Y. et al. Photoswitching topology in polymer networks with metal–organic cages as crosslinks. Nature560, 65–69 (2018).

    Article  CAS  Google Scholar 

  15. Sosso, G. C. et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev.116, 7078–7116 (2016).

    Article  CAS  Google Scholar 

  16. Rogerson, M. A. & Cardoso, S. S. S. Solidification in heat packs: I. Nucleation rate. AIChE J.49, 505–515 (2003).

    Article  CAS  Google Scholar 

  17. Rogerson, M. A. & Cardoso, S. S. S. Solidification in heat packs: II. Role of cavitation. AIChE J.49, 516–521 (2003).

    Article  CAS  Google Scholar 

  18. Rogerson, M. A. & Cardoso, S. S. S. Solidification in heat packs: III. metallic trigger. AIChE J.49, 522–529 (2003).

    Article  CAS  Google Scholar 

  19. Guo, Q., Zaïri, F. & Guo, X. Thermodynamics and mechanics of stretch-induced crystallization in rubbers. Phys. Rev. E97, 052501 (2018).

    Article  Google Scholar 

  20. Wei, L. & Ohsasa, K. Supercooling and solidification behavior of phase change material. ISIJ Int.50, 1265–1269 (2010).

    Article  CAS  Google Scholar 

  21. Dannemand, M., Schultz, J. M., Johansen, J. B. & Furbo, S. Long term thermal energy storage with stable supercooled sodium acetate trihydrate. Appl. Therm. Eng.91, 671–678 (2015).

    Article  CAS  Google Scholar 

  22. Majidi, C. & Wood, R. J. Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Appl. Phys. Lett.97, 164104 (2010).

    Article  Google Scholar 

  23. Cao, C. & Zhao, X. Tunable stiffness of electrorheological elastomers by designing mesostructures. Appl. Phys. Lett.103, 041901 (2013).

    Article  Google Scholar 

  24. Narang, Y. S., Vlassak, J. J. & Howe, R. D. Mechanically versatile soft machines through laminar jamming. Adv. Funct. Mater.28, 1707136 (2018).

    Article  Google Scholar 

  25. Brown, E. et al. Universal robotic gripper based on the jamming of granular material. Proc. Natl Acad. Sci. USA107, 18809–18814 (2010).

    Article  CAS  Google Scholar 

  26. Shan, W., Lu, T. & Majidi, C. Soft-matter composites with electrically tunable elastic rigidity. Smart Mater. Struct.22, 085005 (2013).

    Article  Google Scholar 

  27. Cheng, N. G., Gopinath, A., Wang, L., Iagnemma, K. & Hosoi, A. E. Thermally tunable, self-healing composites for soft robotic applications. Macromol. Mater. Eng.299, 1279–1284 (2014).

    Article  CAS  Google Scholar 

  28. Maghooa, F., Stilli, A., Noh, Y., Althoefer, K. & Wurdemann, H. A. Tendon and pressure actuation for a bio-inspired manipulator based on an antagonistic principle. In 2015 IEEE International Conference on Robotics and Automation 2556–2561 (IEEE, 2015).

  29. Stilli, A., Wurdemann, H. A. & Althoefer, K. Shrinkable, stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems 2476–2481 (IEEE, 2014).

  30. Qu, X., Wirsén, A. & Albertsson, A.-C. Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer41, 4589–4598 (2000).

    Article  CAS  Google Scholar 

  31. Motokawa, T. & Tsuchi, A. Dynamic mechanical properties of body-wall dermis in various mechanical states and their implications for the behavior of sea cucumbers. Biol. Bull.205, 261–275 (2003).

    Article  Google Scholar 

  32. Seppälä, A., Meriläinen, A., Wikström, L. & Kauranen, P. The effect of additives on the speed of the crystallization front of xylitol with various degrees of supercooling. Exp. Therm. Fluid Sci.34, 523–527 (2010).

    Article  Google Scholar 

  33. Anseth, K. S., Bowman, C. N. & Brannon-Peppas, L. Mechanical properties of hydrogels and their experimental determination. Biomaterials17, 1647–1657 (1996).

    Article  CAS  Google Scholar 

  34. Schubert, B. E. & Floreano, D. Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS). RSC Adv.3, 24671–24679 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Vlasea, F. Liravi, M. Salarian and H. Fayazfar from the Multi-Scale Additive Manufacturing Lab at the University of Waterloo, as well as A. Finkle (co-founder) and L. S. Young from Structur3D Printing (72 St Leger Street, Suite 315, Kitchener, Ontario, Canada) for their support and consultations on additive manufacturing. We would also like to thank R. Messier and S. Messier from Living Aquarium (652 Bishop Street North, Cambridge, Ontario, Canada) for providing the living sea cucumber for photography. We would also like to thank J. Vandenberg, L. Chen, C. Zhang, P. Si and Z. Shi for proofreading. We are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support of this project (grant no. RGPIN-2014-04663).

Author information

Authors and Affiliations

Authors

Contributions

F.Y. conceived the idea and refined it with the help of A.C. F.Y. and A.C. designed and performed the experiments. F.Y., A.C. and B.Z. analysed and interpreted the results. L.Y. provided consultation and critical feedback on the manuscript. G.R. performed early mechanical measurements and additive manufacturing. F.Y., A.C. and B.Z. wrote the manuscript. B.Z. supervised and directed the research.

Corresponding authors

Correspondence to Fut (Kuo) Yang or Boxin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video legends 1–7, Notes 1–9, Table 1, Figs. 1–4 and refs. 1–26.

Supplementary Video 1

Freezing and melting of sal-gel.

Supplementary Video 2

Sal-gel properties at the rigid state.

Supplementary Video 3

Stability of sal-gel.

Supplementary Video 4

Soft-to-hard transitional contact of sal-gel.

Supplementary Video 5

Sal-gel instant and robust self-adhesion.

Supplementary Video 6

Smart sal-gel-based construct.

Supplementary Video 7

Three-dimensional doodling of sal-gel sea cucumber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F.(., Cholewinski, A., Yu, L. et al. A hybrid material that reversibly switches between two stable solid states. Nat. Mater. 18, 874–882 (2019). https://doi.org/10.1038/s41563-019-0434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0434-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing