Fundamentals of inorganic solid-state electrolytes for batteries

Abstract

In the critical area of sustainable energy storage, solid-state batteries have attracted considerable attention due to their potential safety, energy-density and cycle-life benefits. This Review describes recent progress in the fundamental understanding of inorganic solid electrolytes, which lie at the heart of the solid-state battery concept, by addressing key issues in the areas of multiscale ion transport, electrochemical and mechanical properties, and current processing routes. The main electrolyte-related challenges for practical solid-state devices include utilization of metal anodes, stabilization of interfaces and the maintenance of physical contact, the solutions to which hinge on gaining greater knowledge of the underlying properties of solid electrolyte materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic representation of a bipolar-stacked solid-state battery cell.
Fig. 2: Multiscale ion transport and major associated techniques.
Fig. 3: Cation migration mechanisms and associated energy profiles.
Fig. 4: Evolution of chemical potential across the solid electrolyte in contact with an anode and a cathode.
Fig. 5: Reaction possibilities and functional scenarios for solid electrolyte/electrode interfaces in solid-state batteries.
Fig. 6: Mechanical degradation of a solid-state battery.
Fig. 7: Simplified flowchart of available methods for the processing of solid electrolytes for solid-state batteries.

References

  1. 1.

    Placke, T., Kloepsch, R., Dühnen, S. & Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electrochem. 21, 1939–1964 (2017).

  2. 2.

    Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

  3. 3.

    Inoue, T. & Mukai, K. Are all-solid-state lithium-ion batteries really safe? Verification by differential scanning calorimetry with an all-inclusive microcell. ACS Appl. Mater. Interfaces 9, 1507–1515 (2017).

  4. 4.

    Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

  5. 5.

    Bartsch, T. et al. Gas evolution in all-solid-state battery cells. ACS Energy Lett. 3, 2539–2543 (2018).

  6. 6.

    Luntz, A. C., Voss, J. & Reuter, K. Interfacial challenges in solid-state li ion batteries. J. Phys. Chem. Lett. 6, 4599–4604 (2015).

  7. 7.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

  8. 8.

    Kato, Y. et al. All-solid-state batteries with thick electrode configurations. J. Phys. Chem. Lett. 9, 607–613 (2018).

  9. 9.

    Yoshima, K., Harada, Y. & Takami, N. Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries. J. Power Sources 302, 283–290 (2016).

  10. 10.

    Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

  11. 11.

    Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

  12. 12.

    Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

  13. 13.

    Zhang, W. et al. (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J. Mater. Chem. A 5, 9929–9936 (2017).

  14. 14.

    Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials — on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

  15. 15.

    Koerver, R. et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017).

  16. 16.

    Bucci, G., Talamini, B., Renuka Balakrishna, A., Chiang, Y.-M. & Carter, W. C. Mechanical instability of electrode–electrolyte interfaces in solid-state batteries. Phys. Rev. Mater. 2, 105407 (2018).

  17. 17.

    Jansen, M. Volume effect or paddle-wheel mechanism — fast alkali-metal ionic conduction in solids with rotationally disordered complex anions. Angew. Chem. Int. Ed. 30, 1547–1558 (1991).

  18. 18.

    Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

  19. 19.

    Le Van-Jodin, L., Ducroquet, F., Sabary, F. & Chevalier, I. Dielectric properties, conductivity and Li+ ion motion in LiPON thin films. Solid State Ion. 253, 151–156 (2013).

  20. 20.

    Zhu, Z., Chu, I.-H., Deng, Z. & Ong, S. P. Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor. Chem. Mater. 27, 8318–8325 (2015).

  21. 21.

    De Klerk, N. J. J. & Wagemaker, M. Diffusion mechanism of the sodium-ion solid electrolyte Na3PS4 and potential improvements of halogen doping. Chem. Mater. 28, 3122–3130 (2016).

  22. 22.

    Tanibata, N., Noi, K., Hayashi, A. & Tatsumisago, M. Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes. RSC Adv. 4, 17120–17123 (2014).

  23. 23.

    Chu, I.-H. et al. Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor. Sci. Rep. 6, 33733 (2016).

  24. 24.

    Deng, Y. et al. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4 solid electrolytes. J. Am. Chem. Soc. 137, 9136–9145 (2015).

  25. 25.

    Deng, Y. et al. Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect. ACS Appl. Mater. Interfaces 9, 7050–7058 (2017).

  26. 26.

    He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).

  27. 27.

    Burbano, M., Carlier, D., Boucher, F., Morgan, B. J. & Salanne, M. Sparse cyclic excitations explain the low ionic conductivity of stoichiometric Li7La3Zr2O12. Phys. Rev. Lett. 116, 135901 (2016).

  28. 28.

    Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001).

  29. 29.

    Kraft, M. A. et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017).

  30. 30.

    Krauskopf, T. et al. Comparing the descriptors for investigating the influence of lattice dynamics on ionic transport using the superionic conductor Na3PS4–xSex. J. Am. Chem. Soc. 140, 14464–14473 (2018).

  31. 31.

    Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018).

  32. 32.

    Adams, S. & Prasada Rao, R. Structural requirements for fast lithium ion migration in Li10GeP2S12. J. Mater. Chem. 22, 7687–7691 (2012).

  33. 33.

    Fang, H. & Jena, P. Li-rich antiperovskite superionic conductors based on cluster ions. Proc. Natl Acad. Sci. USA 114, 11046–11051 (2017).

  34. 34.

    Dawson, J. A. et al. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes. Energy Environ. Sci. 11, 2993–3002 (2018).

  35. 35.

    Tang, W. S. et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy Environ. Sci. 8, 3637–3645 (2015).

  36. 36.

    Dimitrievska, M. et al. Carbon incorporation and anion dynamics as synergistic drivers for ultrafast diffusion in superionic LiCB11H12 and NaCB11H12. Adv. Energy Mater. 8, 1703422 (2018).

  37. 37.

    Pecher, O., Carretero-González, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).

  38. 38.

    He, X., Zhu, Y., Epstein, A. & Mo, Y. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4, 18 (2018).

  39. 39.

    Marcolongo, A. & Marzari, N. Ionic correlations and failure of Nernst–Einstein relation in solid-state electrolytes. Phys. Rev. Mater. 1, 025402 (2017).

  40. 40.

    Chandra, A., Bhatt, A. & Chandra, A. Ion conduction in superionic glassy electrolytes: an overview. J. Mater. Sci. Technol. 29, 193–208 (2013).

  41. 41.

    Bunde, A., Funke, K. & Ingram, M. D. Ionic glasses: history and challenges. Solid State Ion. 105, 1–13 (1998).

  42. 42.

    Billinge, S. J. L. & Kanatzidis, M. G. Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chem. Commun. 2004, 749–760 (2004).

  43. 43.

    Mori, K. et al. Structural origin of massive improvement in Li-ion conductivity on transition from (Li2S)5(GeS2)(P2S5) glass to Li10GeP2S12 crystal. Solid State Ion. 301, 163–169 (2017).

  44. 44.

    Adams, S. & Swenson, J. Bond valence analysis of reverse Monte Carlo produced structural models; a way to understand ion conduction in glasses. J. Phys. Condens. Matter. 17, S87–S101 (2005).

  45. 45.

    Dietrich, C. et al. Lithium ion conductivity in Li2S–P2S5 glasses — building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A 5, 18111–18119 (2017).

  46. 46.

    Lacivita, V. et al. Resolving the amorphous structure of lithium phosphorus oxynitride (LiPON). J. Am. Chem. Soc. 140, 11029–11038 (2018).

  47. 47.

    Li, W., Ando, Y., Minamitani, E. & Watanabe, S. Study of Li atom diffusion in amorphous Li3PO4 with neural network potential. J. Chem. Phys. 147, 214106 (2017).

  48. 48.

    Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013).

  49. 49.

    Tsukasaki, H., Mori, S., Morimoto, H., Hayashi, A. & Tatsumisago, M. Direct observation of a non-crystalline state of Li2S–P2S5 solid electrolytes. Sci. Rep. 7, 4142 (2017).

  50. 50.

    Breuer, S., Uitz, M. & Wilkening, H. M. R. Rapid Li ion dynamics in the interfacial regions of nanocrystalline solids. J. Phys. Chem. Lett. 9, 2093–2097 (2018).

  51. 51.

    Wu, J.-F. & Guo, X. Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67−xTiO3. Phys. Chem. Chem. Phys. 19, 5880–5887 (2017).

  52. 52.

    Dawson, J. A., Canepa, P., Famprikis, T., Masquelier, C. & Islam, M. S. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 140, 362–368 (2018).

  53. 53.

    Ma, C. et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 7, 1638–1642 (2014).

  54. 54.

    Ganapathy, S., Yu, C., van Eck, E. R. H. & Wagemaker, M. Peeking across grain boundaries in a solid-state ionic conductor. ACS Energy Lett. 4, 1092–1097 (2019).

  55. 55.

    Kim, Y. et al. The effect of relative density on the mechanical properties of hot‐pressed cubic Li7La3Zr2O12. J. Am. Ceram. Soc. 99, 1367–1374 (2016).

  56. 56.

    Kudu, Ö. U. et al. A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S−P2S5 binary system. J. Power Sources 407, 31–43 (2018).

  57. 57.

    Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M. & Minami, T. Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2004).

  58. 58.

    Sakuda, A., Hayashi, A. & Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 3, 2261 (2013).

  59. 59.

    Duchardt, M., Ruschewitz, U., Adams, S., Dehnen, S. & Roling, B. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12. Angew. Chem. Int. Ed. 57, 1351–1355 (2018).

  60. 60.

    Zhang, Z. et al. Na11Sn2PS12: a new solid state sodium superionic conductor. Energy Environ. Sci. 11, 87–93 (2018).

  61. 61.

    Canepa, P. et al. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8, 1759 (2017).

  62. 62.

    Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

  63. 63.

    Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

  64. 64.

    Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

  65. 65.

    Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

  66. 66.

    Sakuda, A., Hayashi, A. & Tatsumisago, M. Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem. Mater. 22, 949–956 (2010).

  67. 67.

    Yu, C. et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Nat. Commun. 8, 1086 (2017).

  68. 68.

    Bielefeld, A., Weber, D. A. & Janek, J. Microstructural modeling of composite cathodes for all-solid-state batteries. J. Phys. Chem. C 123, 1626–1634 (2019).

  69. 69.

    Bron, P., Roling, B. & Dehnen, S. Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. J. Power Sources 352, 127–134 (2017).

  70. 70.

    Zhang, W. et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017).

  71. 71.

    Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G. & Janek, J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018).

  72. 72.

    Nam, Y. J., Oh, D. Y., Jung, S. H. & Jung, Y. S. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018).

  73. 73.

    Kim, D. H. et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017).

  74. 74.

    Braun, P., Uhlmann, C., Weiss, M., Weber, A. & Ivers-Tiffée, E. Assessment of all-solid-state lithium-ion batteries. J. Power Sources 393, 119–127 (2018).

  75. 75.

    Froboese, L., van der Sichel, J. F., Loellhoeffel, T., Helmers, L. & Kwade, A. Effect of microstructure on the ionic conductivity of an all solid-state battery electrode. J. Electrochem. Soc. 166, A318–A328 (2019).

  76. 76.

    Strauss, F. et al. Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries. ACS Energy Lett. 3, 992–996 (2018).

  77. 77.

    Haruyama, J., Sodeyama, K., Han, L., Takada, K. & Tateyama, Y. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014).

  78. 78.

    de Klerk, N. J. J. & Wagemaker, M. Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl. Energy Mater. 1, 5609–5618 (2018).

  79. 79.

    Sang, L., Haasch, R. T., Gewirth, A. A. & Nuzzo, R. G. Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping. Chem. Mater. 29, 3029–3037 (2017).

  80. 80.

    Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

  81. 81.

    Swamy, T., Chen, X. & Chiang, Y.-M. Electrochemical redox behavior of li ion conducting sulfide solid electrolytes. Chem. Mater. 31, 707–713 (2019).

  82. 82.

    Han, F., Gao, T., Zhu, Y., Gaskell, K. J. & Wang, C. A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015).

  83. 83.

    Tian, Y. et al. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci. 10, 1150–1166 (2017).

  84. 84.

    Tang, H. et al. Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations. Chem. Mater. 30, 163–173 (2018).

  85. 85.

    Chen, T., Ceder, G., Sai Gautam, G. & Canepa, P. Evaluation of Mg compounds as coating materials in Mg batteries. Front. Chem. 7, 1–10 (2019).

  86. 86.

    Maier, J. in Handbook of Solid State Chemistry (eds Dronskowski, R., Kikkawa, S. & Stein, A.) 665–701 (Wiley, 2017).

  87. 87.

    Lu, Z. & Ciucci, F. Metal borohydrides as electrolytes for solid-state Li, Na, Mg, and Ca batteries: a first-principles study. Chem. Mater. 29, 9308–9319 (2017).

  88. 88.

    Hartmann, P. et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117, 21064–21074 (2013).

  89. 89.

    Wenzel, S. et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).

  90. 90.

    Sakuma, M., Suzuki, K., Hirayama, M. & Kanno, R. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ion. 285, 101–105 (2016).

  91. 91.

    Wenzel, S. et al. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl. Mater. Interfaces 8, 28216–28224 (2016).

  92. 92.

    Ma, C. et al. Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 16, 7030–7036 (2016).

  93. 93.

    Rettenwander, D. et al. Interface instability of Fe-stabilized Li7La3Zr2O12 versus Li metal. J. Phys. Chem. C 122, 3780–3785 (2018).

  94. 94.

    Schwöbel, A., Hausbrand, R. & Jaegermann, W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ion. 273, 51–54 (2015).

  95. 95.

    Ohta, N. et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006).

  96. 96.

    Jung, S. H. et al. Li3BO3–Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem. Mater. 30, 8190–8200 (2018).

  97. 97.

    Koerver, R. et al. Redox-active cathode interphases in solid-state batteries. J. Mater. Chem. A 5, 22750–22760 (2017).

  98. 98.

    Shin, B. R. et al. Comparative Study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta 146, 395–402 (2014).

  99. 99.

    Hakari, T. et al. Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion–insertion processes. Chem. Mater. 29, 4768–4774 (2017).

  100. 100.

    Schafzahl, L. et al. Long-chain Li and Na alkyl carbonates as solid electrolyte interphase components: structure, ion transport, and mechanical properties. Chem. Mater. 30, 3338–3345 (2018).

  101. 101.

    Dietrich, C. et al. Spectroscopic characterization of lithium thiophosphates by XPS and XAS — a model to help monitor interfacial reactions in all-solid-state batteries. Phys. Chem. Chem. Phys. 20, 20088–20095 (2018).

  102. 102.

    Lorger, S., Usiskin, R. E. & Maier, J. Transport and charge carrier chemistry in lithium sulfide. Adv. Funct. Mater. 29, 1807688 (2018).

  103. 103.

    Zhu, Y., He, X. & Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016).

  104. 104.

    Wu, X., El Kazzi, M. & Villevieille, C. Surface and morphological investigation of the electrode/electrolyte properties in an all-solid-state battery using a Li2S–P2S5 solid electrolyte. J. Electroceram. 38, 207–214 (2017).

  105. 105.

    Zhao, Y. et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J. Power Sources 413, 259–283 (2019).

  106. 106.

    Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2016).

  107. 107.

    Wang, M. & Sakamoto, J. Correlating the interface resistance and surface adhesion of the Li metal–solid electrolyte interface. J. Power Sources 377, 7–11 (2018).

  108. 108.

    McGrogan, F. P. et al. Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017).

  109. 109.

    Bucci, G., Swamy, T., Chiang, Y.-M. & Carter, W. C. Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design. J. Mater. Chem. A 5, 19422–19430 (2017).

  110. 110.

    Deng, Z., Wang, Z., Chu, I.-H., Luo, J. & Ong, S. P. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2016).

  111. 111.

    Bo, S.-H., Wang, Y. & Ceder, G. Structural and Na-ion conduction characteristics of Na3PSxSe4−x. J. Mater. Chem. A 4, 9044–9053 (2016).

  112. 112.

    Geiger, C. A. et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem. 50, 1089–1097 (2011).

  113. 113.

    Boulineau, S., Courty, M., Tarascon, J. M. & Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion. 221, 1–5 (2012).

  114. 114.

    Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).

  115. 115.

    Kuhn, A. et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014).

  116. 116.

    Yi, E., Wang, W., Kieffer, J. & Laine, R. M. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors. J. Power Sources 352, 156–164 (2017).

  117. 117.

    Delaizir, G. et al. The stone age revisited: building a monolithic inorganic lithium-ion battery. Adv. Funct. Mater. 22, 2140–2147 (2012).

  118. 118.

    Schnell, J. et al. All-solid-state lithium-ion and lithium metal batteries — paving the way to large-scale production. J. Power Sources 382, 160–175 (2018).

  119. 119.

    Oudenhoven, J. F. M., Baggetto, L. & Notten, P. H. L. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1, 10–33 (2011).

  120. 120.

    Hitz, G. T. et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today 22, 50–57 (2019).

  121. 121.

    Wang, D. et al. Mitigating the interfacial degradation in cathodes for high-performance oxide-based solid-state lithium batteries. ACS Appl. Mater. Interfaces 11, 4954–4961 (2019).

  122. 122.

    Wang, H., Hood, Z. D., Xia, Y. & Liang, C. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J. Mater. Chem. A 4, 8091–8096 (2016).

  123. 123.

    Ates, T., Keller, M., Kulisch, J., Adermann, T. & Passerini, S. Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 17, 204–210 (2018).

  124. 124.

    Finsterbusch, M. et al. High Capacity garnet-based all-solid-state lithium batteries: fabrication and 3D-microstructure resolved modeling. ACS Appl. Mater. Interfaces 10, 22329–22339 (2018).

  125. 125.

    Matsuda, R., Hirabara, E., Phuc, N. H. H., Muto, H. & Matsuda, A. Composite cathode of NCM particles and Li3PS4–LiI electrolytes prepared using the SEED method for all-solid-state lithium batteries. IOP Conf. Ser. Mater. Sci. Eng. 429, 012033 (2018).

  126. 126.

    Hood, Z. D., Wang, H., Samuthira Pandian, A., Keum, J. K. & Liang, C. Li2OHCl crystalline electrolyte for stable metallic lithium anodes. J. Am. Chem. Soc. 138, 1768–1771 (2016).

  127. 127.

    Kim, T. W., Park, K. H., Choi, Y. E., Lee, J. Y. & Jung, Y. S. Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. J. Mater. Chem. A 6, 840–844 (2018).

  128. 128.

    Sharafi, A. et al. Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 5, 13475–13487 (2017).

  129. 129.

    Groh, M. F. et al. Interface instability in LiFePO4–Li3+xP1-xSixO4 all-solid-state batteries. Chem. Mater. 30, 5886–5895 (2018).

  130. 130.

    Wu, X., Villevieille, C., Novák, P. & El Kazzi, M. Monitoring the chemical and electronic properties of electrolyte–electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy. Phys. Chem. Chem. Phys. 20, 11123–11129 (2018).

  131. 131.

    Chen, K. et al. Morphological effect on reaction distribution influenced by binder materials in composite electrodes for sheet-type all-solid-state lithium-ion batteries with the sulfide-based solid electrolyte. J. Phys. Chem. C 123, 3292–3298 (2019).

  132. 132.

    Park, K. et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater. 28, 8051–8059 (2016).

  133. 133.

    Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

  134. 134.

    Zhang, W. et al. Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl. Mater. Interfaces 10, 22226–22236 (2018).

  135. 135.

    Wang, C. et al. In situ neutron depth profiling of lithium metal–garnet interfaces for solid state batteries. J. Am. Chem. Soc. 139, 14257–14264 (2017).

  136. 136.

    Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

  137. 137.

    Shen, F., Dixit, M. B., Xiao, X. & Hatzell, K. B. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett. 3, 1056–1061 (2018).

  138. 138.

    Cheng, T., Merinov, B. V., Morozov, S. & Goddard, W. A. Quantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface. ACS Energy Lett. 2, 1454–1459 (2017).

  139. 139.

    Schnell, J. et al. Prospects on production technologies and manufacturing cost of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 12, 1818–1833 (2019).

  140. 140.

    De Jonghe, L. C., Feldman, L. & Millett, P. Some geometrical aspects of breakdown of sodium beta alumina. Mater. Res. Bull. 14, 589–595 (1979).

  141. 141.

    Scrosati, B. & Butherus, A. D. Electrochemical Properties of RbAg4I5 Solid Electrolyte. J. Electrochem. Soc. 119, 128–133 (1972).

  142. 142.

    Sharafi, A. et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961–7968 (2017).

  143. 143.

    Wang, M., Wolfenstine, J. B. & Sakamoto, J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface. Electrochim. Acta 296, 842–847 (2019).

  144. 144.

    Masias, A., Felten, N., Garcia-Mendez, R., Wolfenstine, J. & Sakamoto, J. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2019).

  145. 145.

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

  146. 146.

    Ahmad, Z. & Viswanathan, V. Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119, 056003 (2017).

  147. 147.

    Yu, S. et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28, 197–206 (2016).

  148. 148.

    Ahmad, Z., Xie, T., Maheshwari, C., Grossman, J. C. & Viswanathan, V. Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Cent. Sci. 4, 996–1006 (2018).

  149. 149.

    Marbella, L. E. et al. 7Li NMR chemical shift imaging to detect microstructural growth of lithium in all-solid-state batteries. Chem. Mater. 31, 2762–2769 (2019).

  150. 150.

    Manalastas, W. et al. Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy. J. Power Sources 412, 287–293 (2019).

  151. 151.

    Han, F., Yue, J., Zhu, X. & Wang, C. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018).

Download references

Acknowledgements

T.F. acknowledges the Alistore ERI (http://www.alistore.eu/) and CNRS for their financial support in the form of a joint PhD scholarship between Amiens (France) and Bath (UK). P.C. is grateful to the Ramsey Memorial Trust and the University of Bath for the provision of his Ramsey Fellowship. M.S.I. and J.A.D. gratefully acknowledge the EPSRC Programme Grant (EP/M009521/1). The authors are grateful to D. Efremidis for help with the graphical design for Fig. 1.

Author information

T.F., P.C. and J.A.D. carried out the literature review and T.F. drafted the manuscript. All authors contributed to the analysis, discussion and revisions leading to the final version of the manuscript.

Correspondence to Theodosios Famprikis or M. Saiful Islam or Christian Masquelier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Famprikis, T., Canepa, P., Dawson, J.A. et al. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3

Download citation

Further reading