Intermediate-sized molecular sieving of styrene from larger and smaller analogues

Abstract

Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal–organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption–desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: From conventional molecular sieve to intermediate-sized molecular sieve.
Fig. 2: X-ray crystal structures.
Fig. 3: Adsorption isotherms.
Fig. 4: Mixture separation performance.
Fig. 5: High stability and superhydrophobicity.

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding authors upon reasonable request. CCDC 1581460−1581461 entries contain supplementary single-crystal X-ray diffraction data for pX and structural details of 1′. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. 1.

    Kirk-Othmer. Kirk-Othmer Encyclopedia of Chemical Technology 5th edn (Wiley, 2007).

  2. 2.

    Maes, M. et al. Separation of styrene and ethylbenzene on metal–organic frameworks: analogous structures with different adsorption mechanisms. J. Am. Chem. Soc. 132, 15277–15285 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Fritz, U. Ullmann’s Encyclopedia of Industrial Chemistry 7th edn (Wiley, 2011).

  4. 4.

    Mohanty, S. & McCormick, A. V. Prospects for principles of size and shape selective separations using zeolites. Chem. Eng. J. 74, 1–14 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Wang, Y. & Zhao, D. Beyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separation. Cryst. Growth Des. 17, 2291–2308 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Kuznicki, S. M. et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412, 720–724 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Bereciartua, P. J. et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 358, 1068–1071 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Li, B. et al. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv. Mater. 29, 201704210 (2017).

    Google Scholar 

  10. 10.

    Aguado, S., Bergeret, G., Daniel, C. & Farrusseng, D. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. J. Am. Chem. Soc. 134, 14635–14637 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Lin, R.-B. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 17, 1128–1133 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Assen, A. H. et al. Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins. Angew. Chem. Int. Ed. 54, 14353–14358 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Zhang, Z. et al. Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew. Chem. Int. Ed. 56, 16282–16287 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Jin, Z. et al. A novel microporous MOF with the capability of selective adsorption of xylenes. Chem. Commun. 46, 8612–8614 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Lai, Z. et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300, 456–460 (2003).

    CAS  Google Scholar 

  17. 17.

    Kolvenbach, R. et al. A comparative study of diffusion of benzene/p-xylene mixtures in MFI particles, pellets and grown membranes. Catal. Today 168, 147–157 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Islamoglu, T. et al. Postsynthetic tuning of metal–organic frameworks for targeted applications. Acc. Chem. Res. 50, 805–813 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Zhai, Q. G., Bu, X., Zhao, X., Li, D. S. & Feng, P. Pore space partition in metal–organic frameworks. Acc. Chem. Res. 50, 407–417 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Evans, J. D., Sumby, C. J. & Doonan, C. J. Post-synthetic metalation of metal–organic frameworks. Chem. Soc. Rev. 43, 5933–5951 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Verploegh, R. J., Nair, S. & Sholl, D. S. Temperature and loading-dependent diffusion of light hydrocarbons in ZIF-8 as predicted through fully flexible molecular simulations. J. Am. Chem. Soc. 137, 15760–15771 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Zhang, C. et al. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J. Phys. Chem. Lett. 3, 2130–2134 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Mukherjee, S. et al. Framework-flexibility driven selective sorption of p-xylene over other isomers by a dynamic metal–organic framework. Sci. Rep. 4, 5761 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Zhang, J.-P., Zhou, H.-L., Zhou, D.-D., Liao, P.-Q. & Chen, X.-M. Controlling flexibility of metal–organic frameworks. Natl Sci. Rev. 5, 907–919 (2018).

    Article  Google Scholar 

  26. 26.

    Tanaka, D. et al. Kinetic gate-opening process in a flexible porous coordination polymer. Angew. Chem. Int. Ed. 47, 3914–3918 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    Gu, C. et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 363, 387–391 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Hamon, L. et al. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J. Am. Chem. Soc. 131, 17490–17499 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    DeVries, L. D., Barron, P. M., Hurley, E. P., Hu, C. & Choe, W. ‘Nanoscale lattice fence’ in a metal–organic framework: interplay between hinged topology and highly anisotropic thermal response. J. Am. Chem. Soc. 133, 14848–14851 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    Zhou, D.-D. et al. A flexible porous Cu(ii) bis-imidazolate framework with ultrahigh concentration of active sites for efficient and recyclable CO2 capture. Chem. Commun. 49, 11728–11730 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Zhang, J.-P. & Kitagawa, S. Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(i)/Cu(i) 3,3', 5,5'-tetrametyl-4,4'-bipyrazolate. J. Am. Chem. Soc. 130, 907–917 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    Jiang, H. L. et al. An exceptionally stable, porphyrinic Zr metal–organic framework exhibiting pH-dependent fluorescence. J. Am. Chem. Soc. 135, 13934–13938 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Li, R. J., Li, M., Zhou, X. P., Li, D. & O'Keeffe, M. A highly stable MOF with a rod SBU and a tetracarboxylate linker: unusual topology and CO2 adsorption behaviour under ambient conditions. Chem. Commun. 50, 4047–4049 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    He, C.-T. et al. Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chem. Sci. 8, 7560–7565 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Alaerts, L. et al. Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(iv) terephthalate MIL-47. Angew. Chem. Int. Ed. 46, 4293–4297 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    Liao, P.-Q., Huang, N.-Y., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Jie, K. et al. Styrene purification by guest-induced restructuring of pillar[6]arene. J. Am. Chem. Soc. 139, 2908–2911 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Mukherjee, S. et al. Exploiting framework flexibility of a metal–organic framework for selective adsorption of styrene over ethylbenzene. Inorg. Chem. 54, 4403–4408 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Krishna, R. Methodologies for evaluation of metal–organic frameworks in separation applications. RSC Adv. 5, 52269–52295 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Liu, S.-Y. et al. Porous Cu(i) triazolate framework and derived hybrid membrane with exceptionally high sensing efficiency for gaseous oxygen. Adv. Funct. Mater. 24, 5866–5872 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    Grzywa, M. et al. CFA-2 and CFA-3 (coordination framework augsburg university-2 and -3); novel MOFs assembled from trinuclear Cu(i)/Ag(i) secondary building units and 3,3',5,5'-tetraphenyl-bipyrazolate ligands. Dalton Trans. 42, 6909–6921 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Wang, J. H., Li, M. & Li, D. An exceptionally stable and water-resistant metal–organic framework with hydrophobic nanospaces for extracting aromatic pollutants from water. Chem. Eur. J. 20, 12004–12008 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 112, 1001–1033 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Moghadam, P. Z. et al. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation. Chem. Sci. 8, 3989–4000 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Nguyen, J. G. & Cohen, S. M. Moisture-resistant and superhydrophobic metal–organic frameworks obtained via postsynthetic modification. J. Am. Chem. Soc. 132, 4560–4561 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    Rao, K. P. et al. Design of superhydrophobic porous coordination polymers through the introduction of external surface corrugation by the use of an aromatic hydrocarbon building unit. Angew. Chem. Int. Ed. 53, 8225–8230 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Mukherjee, S. et al. An ultrahydrophobic fluorous metal–organic framework derived recyclable composite as a promising platform to tackle marine oil spills. Chem. Eur. J. 22, 10937–10943 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Yu, M., Noble, R. D. & Falconer, J. L. Zeolite membranes: microstructure characterization and permeation nechanisms. Acc. Chem. Res. 44, 1196–1206 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    Torres-Knoop, A., Krishna, R. & Dubbeldam, D. Separating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8. Angew. Chem. Int. Ed. 53, 7774–7778 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Lin, J.-M., He, C.-T., Liao, P.-Q., Lin, R.-B. & Zhang, J.-P. Structural, energetic, and dynamic insights into the abnormal xylene separation behavior of hierarchical porous crystal. Sci. Rep. 5, 11537 (2015).

    CAS  Article  Google Scholar 

  53. 53.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  54. 54.

    Sun, H. COMPASS: an ab initio force-field optimized for condensed-phase applicationss overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998).

    CAS  Article  Google Scholar 

  55. 55.

    Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    CAS  Article  Google Scholar 

  56. 56.

    Mayo, S. L., Olafson, B. D. & Goddard, W. A. III DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    CAS  Article  Google Scholar 

  57. 57.

    Addicoat, M. A., Vankova, N., Akter, I. F. & Heine, T. Extension of the universal force field to metal–organic frameworks. J. Chem. Theory Comput. 10, 880–891 (2014).

    CAS  Article  Google Scholar 

  58. 58.

    Vanduyfhuys, L. et al. QuickFF: a program for a quick and easy derivation of force fields for metal–organic frameworks from ab initio input. J. Comput. Chem. 36, 1015–1027 (2015).

    CAS  Article  Google Scholar 

  59. 59.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  60. 60.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  61. 61.

    Francl, M. M., Carey, C., Chirlian, L. E. & Gange, D. M. Charges fit to electrostatic potentials. II. Can atomic charges be unambiguously fit to electrostatic potentials? J. Comput. Chem. 17, 367–383 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (21731007, 21821003, 91622109 and 21701191), Guangdong Pearl River Talents Program (2017BT01C161) and Guangdong Province Key Area R&D Program (2019B010940001).

Author information

Affiliations

Authors

Contributions

J.-P.Z. designed the research. D.-D.Z. performed syntheses and measurements. C.W., S.-S.W. and Z.-W.M. performed adsorption and selectivity measurements. D.-D.Z., Z.-M.Y. and R.-K.H. performed crystal structure determination. D.-D.Z., P.C., Y.D., H.Y. and C.-T.H. performed computational simulations and analyses. N.-Y.H. performed GC-MS analyses. D.-D.Z. and J.-P.Z. wrote the manuscript.

Corresponding author

Correspondence to Jie-Peng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Figs. 1–37, Supplementary Tables 1–7, Supplementary references 1,2

Supplementary Data

Crystallographic information file for the MAF-41 structure (pX), and the MAF-41 structure after removal of the para-xylene guest (1′)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, DD., Chen, P., Wang, C. et al. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nat. Mater. 18, 994–998 (2019). https://doi.org/10.1038/s41563-019-0427-z

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing