Self-gating in semiconductor electrocatalysis


The semiconductor–electrolyte interface dominates the behaviours of semiconductor electrocatalysis, which has been modelled as a Schottky-analogue junction according to classical electron transfer theories. However, this model cannot be used to explain the extremely high carrier accumulations in ultrathin semiconductor catalysis observed in our work. Inspired by the recently developed ion-controlled electronics, we revisit the semiconductor–electrolyte interface and unravel a universal self-gating phenomenon through microcell-based in situ electronic/electrochemical measurements to clarify the electronic-conduction modulation of semiconductors during the electrocatalytic reaction. We then demonstrate that the type of semiconductor catalyst strongly correlates with their electrocatalysis; that is, n-type semiconductor catalysts favour cathodic reactions such as the hydrogen evolution reaction, p-type ones prefer anodic reactions such as the oxygen evolution reaction and bipolar ones tend to perform both anodic and cathodic reactions. Our study provides new insight into the electronic origin of the semiconductor–electrolyte interface during electrocatalysis, paving the way for designing high-performance semiconductor catalysts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Demonstration of the self-gating phenomenon by in situ electronic/electrochemical measurements.
Fig. 2: Demonstration of the self-gating phenomenon with EIS.
Fig. 3: Self-gating modulated surface conductance of a semiconductor catalyst.
Fig. 4: Correlation of the charge carrier type and the reaction in a semiconductor catalyst.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Allen, J. & Bard, L. R. F. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2000).

  2. 2.

    Memming, R. Semiconductor Electrochemistry 2nd edn (Wiley, 2015).

  3. 3.

    Rajeshwar, K. Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry Vol. 6 (Wiley, 2002).

  4. 4.

    Nozik, A. J. & Memming, R. Physical chemistry of semiconductor–liquid interfaces. J. Phys. Chem. 100, 13061–13078 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    Gao, Y. Q., Georgievskii, Y. & Marcus, R. A. On the theory of electron transfer reactions at semiconductor electrode/liquid interfaces. J. Chem. Phys. 112, 3358–3369 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    Lewis, N. S. Progress in understanding electron-transfer reactions at semiconductor/liquid interfaces. J. Phys. Chem. B 102, 4843–4855 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    Fajardo, A. M. & Lewis, N. S. Rate constants for charge transfer across semiconductor–liquid interfaces. Science 274, 969–972 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    Marcus, R. A. On the theory of oxidation–reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    CAS  Article  Google Scholar 

  9. 9.

    Gerischer, H. Charge transfer processes at semiconductor–electrolyte interfaces in connection with problems of catalysis. Surf. Sci. 18, 97–122 (1969).

    CAS  Article  Google Scholar 

  10. 10.

    Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. 29, 1607054 (2017).

    Article  Google Scholar 

  11. 11.

    Du, H., Lin, X., Xu, Z. & Chu, D. Electric double-layer transistors: a review of recent progress. J. Mater. Sci. 50, 5641–5673 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y. & Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 350, 409–413 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Vanmaekelbergh, D., Houtepen, A. J. & Kelly, J. J. Electrochemical gating: a method to tune and monitor the (opto)electronic properties of functional materials. Electrochim. Acta 53, 1140–1149 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Liu, L. et al. Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl. Mater. Interfaces 9, 27736–27744 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Ling, T. et al. Engineering surface atomic structure of single-crystal cobalt (ii) oxide nanorods for superior electrocatalysis. Nat. Commun. 7, 12876 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Yu, Y. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Voiry, D., Yang, J. & Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 28, 6197–6206 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Franklin, A. D. Electrocatalysis on Non-metallic Surfaces (National Bureau of Standards, 1975).

  24. 24.

    Ding, M. et al. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nat. Commun. 6, 7867 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Ding, M. et al. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 10, 9919–9926 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, Y. et al. Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Res. 8, 2881–2890 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Fujimoto, T. & Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    DasA et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

    Article  Google Scholar 

  30. 30.

    Braga, D., Gutiérrez Lezama, I., Berger, H. & Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 12, 5218–5223 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Ortiz, D. N. et al. Ambipolar transport in CVD grown MoSe2 monolayer using an ionic liquid gel gate dielectric. AIP Adv. 8, 035014 (2018).

    Article  Google Scholar 

  32. 32.

    Chen, X. et al. Probing the electron states and metal–insulator transition mechanisms in molybdenum disulphide vertical heterostructures. Nat. Commun. 6, 6088 (2015).

    Article  Google Scholar 

  33. 33.

    Chu, L. et al. Charge transport in ion-gated mono-, bi- and trilayer MoS2 field effect transistors. Sci. Rep. 4, 7293 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    Lezama, I. G. et al. Single-crystal organic charge-transfer interfaces probed using Schottky-gated heterostructures. Nat. Mater. 11, 788 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Kaji, T., Takenobu, T., Morpurgo, A. F. & Iwasa, Y. Organic single-crystal Schottky gate transistors. Adv. Mater. 21, 3689–3693 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    Neamen, D. Semiconductor Physics and Devices (McGraw-Hill, 2003).

  38. 38.

    Xu, Z. J. From two-phase to three-phase: the new electrochemical interface by oxide electrocatalysts. Nano–Micro Lett. 10, 8 (2017).

    Article  Google Scholar 

  39. 39.

    Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    Wei, C. et al. Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29, 1606800 (2017).

    Article  Google Scholar 

  42. 42.

    Liu, Y. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2, 17127 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M. & Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability and mechanism. J. Am. Chem. Soc. 137, 3638–3648 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  46. 46.

    Li, S. et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1, 60–66 (2015).

    Article  Google Scholar 

  47. 47.

    Huang, J.-H. et al. Large-area 2D layered MoTe2 by physical vapor deposition and solid-phase crystallization in a tellurium-free atmosphere. Adv. Mater. Interfaces 4, 1700157 (2017).

    Article  Google Scholar 

  48. 48.

    Salvatierra Rodrigo, V. et al. Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Adv. Energy Mater. 6, 1600918 (2016).

    Article  Google Scholar 

  49. 49.

    Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Wang, J. et al. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv. Mater. 29, 1604464 (2017).

    Article  Google Scholar 

Download references


This work was supported by MOE under AcRF Tier 1 (M4011782.070 RG4/17 and M4011993.070 RG7/18), AcRF Tier 2 (2015-T2-2-007, 2016-T2-1-131, 2016-T2-2-153 and 2017-T2-2-136) and AcRF Tier 3 (2018-T3-1-002), and the A*Star QTE programme. This work was also supported by MOE under AcRF Tier 1 (2016-T1-002-051, 2017-T1-001-150 and 2017-T1-002-119) and AcRF Tier 2 (2015-T2-2-057, 2016-T2-2-103 and 2017-T2-1-162), and by NTU under Start-Up Grant M4081296.070.500000 in Singapore. H.Z. acknowledges support from ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center and a Start-Up Grant from City University of Hong Kong. The authors acknowledge the Facility for Analysis, Characterization, Testing and Simulation, Nanyang Technological University, Singapore for use of their electron microscopy facilities. Q.J.W. acknowledges the support of the Ministry of Education Singapore Grant (MOE2016-T2-1-128) and National Research Foundation–Competitive Research Program (NRF-CRP18-2017-02). Z.Z. acknowledges the support from NSFC (11772153). Z.W.S. acknowledges support from the Institute of Materials Research and Engineering, A*STAR (IMRE/17-1R1211). Work at Rice was supported by the US ARO Grant W911NF-16-1-0255. The authors thank Z.J. Xu for discussions about surface conductance and L. Han, J.R. Galan-Mascaros (Institute of Chemical Research of Catalonia) and P. Tang (Catalonia Institute for Energy Research) for discussions about EIS. The authors also thank Y. Liu (Hunan University) for discussions about the semiconductor electronic device and S. Teddy for XPS measurements and data analysis.

Author information




H.Z. and Z.L. guided the project. Y.H. and Q.H. observed the self-gating phenomenon, designed the experiments, fabricated the devices and performed in situ electronic/electrochemical and EIS measurements and analysis. Q.H., Y.H., M.D., C.Z. and S.G. made the microcell set-up. Lu.W., Z.Z. and B.I.Y. performed the first-principle calculations and analysed the simulation data. Y.H., P.G., C.G. and X.W. synthesized single-layer TMD nanosheets. P.Y., Q.Z., F.L., Li.W. and M.W. synthesized TMD crystals. X.Y. synthesized Si nanowires. Z.X., A.D.H. and Z.W.S. analysed the electrochemical results and revised the manuscript. Y.H., Q.H., H.Z. and Z.L. conceived and supervised the experiments. Y.H., Q.H., Q.J.W., H.Z. and Z.L. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Qi Jie Wang or Hua Zhang or Zheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Figs. 1–25, Supplementary notes 1–6, Supplementary Tables 1–4, Supplementary references 1–152

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., He, Q., Wang, L. et al. Self-gating in semiconductor electrocatalysis. Nat. Mater. 18, 1098–1104 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing