Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals

Abstract

The interplay between hydrogen and nanovoids, despite long being recognized as a central factor in hydrogen-induced damage in structural materials, remains poorly understood. Here, focusing on tungsten as a model body-centred cubic system, we explicitly demonstrate sequential adsorption of hydrogen adatoms on Wigner–Seitz squares of nanovoids with distinct energy levels. Interaction between hydrogen adatoms on nanovoid surfaces is shown to be dominated by pairwise power-law repulsion. We establish a predictive model for quantitative determination of the configurations and energetics of hydrogen adatoms in nanovoids. This model, combined with the equation of states of hydrogen gas, enables the prediction of hydrogen molecule formation in nanovoids. Multiscale simulations, performed based on our model, show good agreement with recent thermal desorption experiments. This work clarifies fundamental physics and provides a full-scale predictive model for hydrogen trapping and bubbling in nanovoids, offering long-sought mechanistic insights that are crucial for understanding hydrogen-induced damage in structural materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of nanovoid surfaces and related hydrogen energy levels.
Fig. 2: Energetics of H adatoms on nanovoid surfaces.
Fig. 3: Comparison between model predictions and DFT results.
Fig. 4: Thermal desorption spectra of deuterium from W.

Similar content being viewed by others

Data availability

The data generated and/or analysed within the current study will be made available upon reasonable request to the authors.

Code availability

The code for the object kinetic Monte Carlo simulations will be made available upon reasonable request to the authors.

References

  1. Zhang, Z., Obasi, G., Morana, R. & Preuss, M. Hydrogen assisted crack initiation and propagation in a nickel-based superalloy. Acta Mater. 113, 272–283 (2016).

    Article  CAS  Google Scholar 

  2. Song, J. & Curtin, W. A. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12, 145–151 (2013).

    Article  CAS  Google Scholar 

  3. Tiegel, M. C. et al. Crack and blister initiation and growth in purified iron due to hydrogen loading. Acta Mater. 115, 24–34 (2016).

    Article  CAS  Google Scholar 

  4. Xie, D. G. et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 14, 899–903 (2015).

    Article  CAS  Google Scholar 

  5. Jia, Y. Z. et al. Subsurface deuterium bubble formation in W due to low-energy high flux deuterium plasma exposure. Nucl. Fusion 57, 034003 (2017).

    Article  CAS  Google Scholar 

  6. Garner, F. A. et al. Retention of hydrogen in fcc metals irradiated at temperatures leading to high densities of bubbles or voids. J. Nucl. Mater. 356, 122–135 (2006).

    Article  CAS  Google Scholar 

  7. Toda, H. et al. Growth behavior of hydrogen micropores in aluminum alloys during high-temperature exposure. Acta Mater. 57, 2277–2290 (2009).

    Article  CAS  Google Scholar 

  8. Neeraj, T., Srinivasan, R. & Li, J. Hydrogen embrittlement of ferritic steels: observations on deformation microstructure, nanoscale dimples and failure by nanovoiding. Acta Mater. 60, 5160–5171 (2012).

    Article  CAS  Google Scholar 

  9. Robertson, I. M. et al. Hydrogen embrittlement understood. Metall. Mater. Trans. B 46, 1085–1103 (2015).

    Article  CAS  Google Scholar 

  10. Zhao, J. et al. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation. J. Nucl. Mater. 503, 198–204 (2018).

    Article  CAS  Google Scholar 

  11. Veen, A. V. et al. Hydrogen exchange with voids in tungsten observed with TDS and PA. J. Nucl. Mater. 155–157, 1113–1117 (1988).

    Article  Google Scholar 

  12. Zibrov, M., Ryabtsev, S., Gasparyan, Y. & Pisarev, A. Experimental determination of the deuterium binding energy with vacancies in tungsten. J. Nucl. Mater. 477, 292–297 (2016).

    Article  CAS  Google Scholar 

  13. Ryabtsev, S., Gasparyan, Y., Zibrov, M., Shubina, A. & Pisarev, A. Deuterium thermal desorption from vacancy clusters in tungsten. Nucl. Instrum. Methods Phys. Res. B 382, 101–104 (2016).

    Article  CAS  Google Scholar 

  14. Ogorodnikova, O. V. et al. Surface modification and deuterium retention in reduced-activation steels under low-energy deuterium plasma exposure. Part II: Steels pre-damaged with 20 MeV W ions and high heat flux. Nucl. Fusion 57, 036011 (2017).

    Article  CAS  Google Scholar 

  15. Zhu, X.-L. et al. Deuterium occupation of vacancy-type defects in argon-damaged tungsten exposed to high flux and low energy deuterium plasma. Nucl. Fusion 56, 036010 (2016).

    Article  CAS  Google Scholar 

  16. Ogorodnikova, O. V., Roth, J. & Mayer, M. Ion-driven deuterium retention in tungsten. J. Appl. Phys. 103, 034902 (2008).

    Article  CAS  Google Scholar 

  17. Guterl, J., Smirnov, R. D., Krasheninnikov, S. I., Zibrov, M. & Pisarev, A. A. Theoretical analysis of deuterium retention in tungsten plasma-facing components induced by various traps via thermal desorption spectroscopy. Nucl. Fusion 55, 093017 (2015).

    Article  CAS  Google Scholar 

  18. Fu, C.-C., Torre, J. D., Willaime, F., Bocquet, J.-L. & Barbu, A. Multiscale modelling of defect kinetics in irradiated iron. Nat. Mater. 4, 68–74 (2004).

    Article  CAS  Google Scholar 

  19. Valles, G. et al. Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten. Acta Mater. 122, 277–286 (2017).

    Article  CAS  Google Scholar 

  20. De Backer, A. et al. Multiscale modelling of the interaction of hydrogen with interstitial defects and dislocations in bcc tungsten. Nucl. Fusion 58, 016006 (2018).

    Article  CAS  Google Scholar 

  21. Liu, Y.-L., Zhang, Y., Zhou, H.-B. & Lu, G.-H. Vacancy trapping mechanism for hydrogen bubble formation in metal. Phys.Rev. B 79, 172103 (2009).

    Article  CAS  Google Scholar 

  22. Xing, W. et al. Unified mechanism for hydrogen trapping at metal vacancies. Int. J. Hydrog. Energy 39, 11321–11327 (2014).

    Article  CAS  Google Scholar 

  23. Ohsawa, K., Goto, J., Yamakami, M., Yamaguchi, M. & Yagi, M. Trapping of multiple hydrogen atoms in a tungsten monovacancy from first principles. Phys. Rev. B 82, 184117 (2010).

    Article  CAS  Google Scholar 

  24. Ohsawa, K., Eguchi, K., Watanabe, H., Yamaguchi, M. & Yagi, M. Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals. Phys. Rev. B 85, 094102 (2012).

    Article  CAS  Google Scholar 

  25. You, Y.-W. et al. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals. AIP Adv. 3, 012118 (2013).

    Article  CAS  Google Scholar 

  26. Tanguy, D., Wang, Y. & Connétable, D. Stability of vacancy-hydrogen clusters in nickel from first-principles calculations. Acta Mater. 78, 135–143 (2014).

    Article  CAS  Google Scholar 

  27. Gui, L.-J. et al. First-principles investigation on vacancy trapping behaviors of hydrogen in vanadium. J. Nucl. Mater. 442, S688–S693 (2013).

    Article  CAS  Google Scholar 

  28. Kong, X.-S. et al. First-principles calculations of hydrogen solution and diffusion in tungsten: temperature and defect-trapping effects. Acta Mater. 84, 426–435 (2015).

    Article  CAS  Google Scholar 

  29. Fernandez, N., Ferro, Y. & Kato, D. Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models. Acta Mater. 94, 307–318 (2015).

    Article  CAS  Google Scholar 

  30. Ismer, L., Park, M. S., Janotti, A. & Van de Walle, C. G. Interactions between hydrogen impurities and vacancies in Mg and Al: a comparative analysis based on density functional theory. Phys. Rev. B 80, 184110 (2009).

    Article  CAS  Google Scholar 

  31. Tateyama, Y. & Ohno, T. Stability and clusterization of hydrogen-vacancy complexes in α−Fe: an ab initio study. Phys. Rev. B 67, 174105 (2003).

    Article  CAS  Google Scholar 

  32. You, Y.-W. et al. Clustering of H and He, and their effects on vacancy evolution in tungsten in a fusion environment. Nucl. Fusion 54, 103007 (2014).

    Article  CAS  Google Scholar 

  33. Lu, G. & Kaxiras, E. Hydrogen embrittlement of aluminum: the crucial role of vacancies. Phys. Rev. Lett. 94, 155501 (2005).

    Article  CAS  Google Scholar 

  34. Monasterio, P. R., Lau, T. T., Yip, S. & Van Vliet, K. J. Hydrogen-vacancy interactions in Fe–C alloys. Phys. Rev. Lett. 103, 085501 (2009).

    Article  CAS  Google Scholar 

  35. Hayward, E. & Fu, C.-C. Interplay between hydrogen and vacancies in α-Fe. Phys. Rev. B 87, 174103 (2013).

    Article  CAS  Google Scholar 

  36. Hayward, E., Hayward, R. & Fu, C.-C. Predicting distinct regimes of hydrogen behavior at nano-cavities in metals. J. Nucl. Mater. 476, 36–44 (2016).

    Article  CAS  Google Scholar 

  37. Geng, W. T. et al. Hydrogen bubble nucleation in α-iron. Scripta Mater. 134, 105–109 (2017).

    Article  CAS  Google Scholar 

  38. Wang, L. F., Shu, X., Lu, G. H. & Gao, F. Embedded-atom method potential for modeling hydrogen and hydrogen–defect interaction in tungsten. J. Phys. Condens. Matter 29, 435401 (2017).

    Article  Google Scholar 

  39. Cusentino, M. A., Hammond, K. D., Sefta, F., Juslin, N. & Wirth, B. D. A comparison of interatomic potentials for modeling tungsten–hydrogen–helium plasma–surface interactions. J. Nucl. Mater. 463, 347–350 (2015).

    Article  CAS  Google Scholar 

  40. Brimbal, D. et al. Application of Raman spectroscopy to the study of hydrogen in an ion irradiated oxide-dispersion strengthened Fe–12Cr steel. J. Nucl. Mater. 447, 179–182 (2014).

    Article  CAS  Google Scholar 

  41. Koch, S. J., Lavrov, E. V. & Weber, J. Towards understanding the hydrogen molecule in ZnO. Phys. Rev. B 90, 205212 (2014).

    Article  CAS  Google Scholar 

  42. van de Walle, C. G. & P.Goss, J. Energetics and vibrational frequencies of interstitial H2 molecules in semiconductors. Mater. Sci. Eng. B 58, 17–23 (1999).

    Article  Google Scholar 

  43. Christmann, K. Interaction of hydrogen with solid surfaces. Surf. Sci. Rep. 9, 1–163 (1988).

    Article  Google Scholar 

  44. Einstein, T. L. in Handbook of Surface Science Vol. 1, 1st edn (ed. Unertl, W. N.) Ch. 11 (Elsevier, 1996).

  45. Loubeyre, P. et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383, 702–704 (1996).

    Article  CAS  Google Scholar 

  46. Shimizu, H. & Brody, E. M. Brillouin measurements of solid n-H2 and n-D2 to 200 kbar at room temperature. Phys. Rev. Lett. 47, 128–131 (1981).

    Article  CAS  Google Scholar 

  47. Hemmes, H., Driessen, A. & Griessen, R. Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1000 K. J. Phys. C 19, 3571–3585 (1986).

    Article  CAS  Google Scholar 

  48. Becquart, C. S., Domain, C., Sarkar, U., DeBacker, A. & Hou, M. Microstructural evolution of irradiated tungsten: ab initio parameterisation of an OKMC model. J. Nucl. Mater. 403, 75–88 (2010).

    Article  CAS  Google Scholar 

  49. Debelle, A., Barthe, M. F. & Sauvage, T. First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy. J. Nucl. Mater. 376, 216–221 (2008).

    Article  CAS  Google Scholar 

  50. De Backer, A., Lhuillier, P. E., Becquart, C. S. & Barthe, M. F. Modelling of the implantation and the annealing stages of 800keV 3He implanted tungsten: formation of nanovoids in the near surface region. J. Nucl. Mater. 429, 78–91 (2012).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  53. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  55. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  56. Becquart, C. S. & Domain, C. Ab initio calculations about intrinsic point defects and He in W. Nucl. Instrum. Methods Phys. Res. B 255, 23–26 (2007).

    Article  CAS  Google Scholar 

  57. Hou, J. et al. Modification on theory of sink strength: an object kinetic Monte Carlo study. Comput. Mater. Sci. 123, 148–157 (2016).

    Article  CAS  Google Scholar 

  58. Hou, J. et al. Hydrogen bubble nucleation by self-clustering: density functional theory and statistical model studies using tungsten as a model system. Nucl. Fusion 58, 096021 (2018).

    Article  CAS  Google Scholar 

  59. Li, Y. G. et al. IM3D: a parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry. Sci. Rep. 5, 18130 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Li at the Institute of Solid State Physics, Chinese Academy of Sciences for providing the IM3D primary irradiation damage data. The authors are grateful for valuable comments and discussion from G. Lu at Beihang University and W. Han at Xi’an Jiaotong University, and also thank G. Lu for providing the empirical-potential-based hydrogen trapping data from his earlier work. This work was financially supported by the National Magnetic Confinement Fusion Energy Research Project (grant no. 2015GB112001), the National Key R&D Program of China (grant no. 2018YFE0308102), the National Natural Science Foundation of China (nos. 11735015, 51771185 and 11575229) and the Natural Sciences and Engineering Research Council of Canada Discovery grant no. RGPIN-2017-05187. J.H. acknowledges financial support from the China Scholarship Council (CSC). J.H. and J.S. acknowledge the Supercomputer Consortium Laval UQAM McGill and Eastern Quebec for providing computing resources. X.W. acknowledges support from the Youth Innovation Promotion Association of CAS (2015384).

Author information

Authors and Affiliations

Authors

Contributions

J.S. and X.W. conceived the original idea and designed the work. X.S.K. and J.H. conducted the simulations with help from C.S.L. All authors wrote the paper and discussed the results. C.S.L. and J.S. supervised the project.

Corresponding authors

Correspondence to Xuebang Wu or Jun Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Supplementary Tables 1–5, Supplementary references 1–19

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Kong, XS., Wu, X. et al. Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals. Nat. Mater. 18, 833–839 (2019). https://doi.org/10.1038/s41563-019-0422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0422-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing