Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance

Abstract

The quest for an integrated quantum optics platform has motivated the field of semiconductor quantum dot research for two decades. Demonstrations of quantum light sources, single photon switches, transistors and spin–photon interfaces have become very advanced. Yet the fundamental problem that every quantum dot is different prevents integration and scaling beyond a few quantum dots. Here, we address this challenge by patterning strain via local phase transitions to selectively tune individual quantum dots that are embedded in a photonic architecture. The patterning is implemented with in operando laser crystallization of a thin HfO2 film ‘sheath’ on the surface of a GaAs waveguide. Using this approach, we tune InAs quantum dot emission energies over the full inhomogeneous distribution with a step size down to the homogeneous linewidth and a spatial resolution better than 1 µm. Using these capabilities, we tune multiple quantum dots into resonance within the same waveguide and demonstrate a quantum interaction via superradiant emission from three quantum dots.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the energy tuning approach and sample overview.
Fig. 2: QD tuning curves.
Fig. 3: Spatial resolution of QD tuning.
Fig. 4: Superradiant emission from strain-tuned QDs in a photonic crystal waveguide.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

COMSOL code used to simulate thermal and strain profiles is available from the corresponding author upon request.

References

  1. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    Article  CAS  Google Scholar 

  2. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    Article  CAS  Google Scholar 

  3. Petruzzella, M. et al. Quantum photonic integrated circuits based on tunable dots and tunable cavities. APL Photon. 3, 106103 (2018).

    Article  Google Scholar 

  4. Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).

    Article  CAS  Google Scholar 

  5. Kiravittaya, S., Rastelli, A. & Schmidt, O. G. Advanced quantum dot configurations. Rep. Prog. Phys 72, 046502 (2009).

    Article  Google Scholar 

  6. Yakes, M. K. et al. Leveraging crystal anisotropy for deterministic growth of InAs quantum dots with narrow optical linewidths. Nano Lett. 13, 4870 (2013).

    Article  CAS  Google Scholar 

  7. Jöns, K. D. et al. Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots. Nano Lett. 13, 126 (2013).

    Article  Google Scholar 

  8. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  CAS  Google Scholar 

  9. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  CAS  Google Scholar 

  10. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nature 12, 1026–1039 (2017).

    CAS  Google Scholar 

  11. Huber, D. et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 33902 (2018).

    Article  CAS  Google Scholar 

  12. Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    Article  CAS  Google Scholar 

  13. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  CAS  Google Scholar 

  14. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  CAS  Google Scholar 

  15. Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    Article  CAS  Google Scholar 

  16. Javadi, A. et al. Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nat. Nanotechnol. 13, 398–403 (2018).

    Article  CAS  Google Scholar 

  17. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  Google Scholar 

  18. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    Article  Google Scholar 

  19. Schaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

    Article  CAS  Google Scholar 

  20. Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 10503 (2017).

    Article  CAS  Google Scholar 

  21. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    Article  CAS  Google Scholar 

  22. Pagliano, F. et al. Dynamically controlling the emission of single excitons in photonic crystal cavities. Nat. Commun. 5, 5786 (2014).

    Article  CAS  Google Scholar 

  23. Kim, J. H., Aghaeimeibodi, S., Richardson, C. J. K., Leavitt, R. P. & Waks, E. Super-radiant emission from quantum dots in a nanophotonic waveguide. Nano Lett. 18, 4734–4740 (2018).

    Article  CAS  Google Scholar 

  24. Faraon, A. et al. Local quantum dot tuning on photonic crystal chips. Appl. Phys. Lett. 90, 213110 (2007).

    Article  Google Scholar 

  25. Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. Phys. Rev. Lett. 103, 217402 (2009).

    Article  Google Scholar 

  26. Sweeney, T. M. et al. Cavity-stimulated raman emission from a single quantum dot spin. Nat. Photon. 8, 442–447 (2014).

    Article  CAS  Google Scholar 

  27. Fernandez, G., Volz, T., Desbuquois, R., Badolato, A. & Imamoglu, A. Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot. Phys. Rev. Lett. 103, 087406 (2009).

    Article  CAS  Google Scholar 

  28. Yuan, X. et al. Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics. Nat. Commun. 9, 3058 (2018).

    Article  Google Scholar 

  29. Ding, F. et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys. Rev. Lett. 104, 67405 (2010).

    Article  CAS  Google Scholar 

  30. Kuklewicz, C. E., Malein, R. N. E., Petroff, P. M. & Gerardot, B. D. Electro-elastic tuning of single particles in individual self-assembled quantum dots. Nano Lett. 12, 3761–3765 (2012).

    Article  CAS  Google Scholar 

  31. Höfer, B. et al. Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots. Appl. Phys. Lett. 110, 151102 (2017).

    Article  Google Scholar 

  32. Stepanov, P. et al. Large and uniform optical emission shifts in quantum dots strained along their growth axis. Nano Lett. 16, 3215–3220 (2016).

    Article  CAS  Google Scholar 

  33. Bouwes Bavinck, M. et al. Controlling a nanowire quantum dot band gap using a straining dielectric envelope. Nano Lett. 12, 6206–6211 (2012).

    Article  CAS  Google Scholar 

  34. Ellis, D. J. P. et al. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl. Phys. Lett. 90, 2005–2008 (2007).

    Google Scholar 

  35. Nakaoka, T. et al. Tuning of g-factor in self-assembled In(Ga)As quantum dots through strain engineering. Phys. Rev. B 71, 205301 (2005).

    Article  Google Scholar 

  36. Rastelli, A. et al. In situ laser microprocessing of single self-assembled quantum dots and optical microcavities. Appl. Phys. Lett. 90, 73120 (2007).

    Article  Google Scholar 

  37. Fiset-Cyr, A. et al. In-situ tuning of individual position-controlled nanowire quantum dots via laser-induced intermixing. Appl. Phys. Lett. 113, 53105 (2018).

    Article  Google Scholar 

  38. Takahashi, M. et al. Local control of emission energy of semiconductor quantum dots using volume expansion of a phase-change material. Appl. Phys. Lett. 102, 93120 (2013).

    Article  Google Scholar 

  39. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  CAS  Google Scholar 

  40. Mcardell, B. W. et al. The super of superradiance. Science 325, 1510–1512 (2009).

    Article  Google Scholar 

  41. Goban, A. et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015).

    Article  CAS  Google Scholar 

  42. Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum optical networks. Science 354, 847–850 (2016).

    Article  CAS  Google Scholar 

  43. Venkatachalam, D. K., Bradby, J. E., Saleh, M. N., Ruffell, S. & Elliman, R. G. Nanomechanical properties of sputter-deposited HfO2 and HfxSi1 − xO2 thin films. J. Appl. Phys. 110, 43527 (2011).

    Article  Google Scholar 

  44. Hausmann, D. M. & Gordon, R. G. Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. J. Cryst. Growth 249, 251–261 (2003).

    Article  CAS  Google Scholar 

  45. Lounis, B., Orrit, M., Koganov, G. A. & Shuker, R. Few emitters in a cavity: from cooperative emission to individualization. New J. Phys. 13, 93020 (2011).

    Article  Google Scholar 

  46. Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. New J. Phys. 20, 115003 (2018).

    Article  CAS  Google Scholar 

  47. Pursley, B. C., Carter, S. G., Yakes, M. K., Bracker, A. S. & Gammon, D. Picosecond pulse shaping of single photons using quantum dots. Nat. Commun. 9, 115 (2018).

    Article  CAS  Google Scholar 

  48. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  CAS  Google Scholar 

  49. Sohn, Y. I. et al. Controlling the coherence of a diamond spin qubit through its strain environment. Nat. Commun. 9, 17–22 (2018).

    Article  Google Scholar 

  50. Lee, K. W. et al. Strain coupling of a mechanical resonator to a single quantum emitter in diamond. Phys. Rev. Appl. 6, 034005 (2016).

    Article  Google Scholar 

  51. Carter, S. G. et al. Sensing flexural motion of a photonic crystal membrane with InGaAs quantum dot. Appl. Phys. Lett. 111, 183101 (2017).

    Article  Google Scholar 

  52. Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–476 (2017).

    Article  CAS  Google Scholar 

  53. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article  Google Scholar 

  54. Vora, P. M. et al. Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity. Nat. Commun. 6, 7665 (2015).

    Article  CAS  Google Scholar 

  55. Löbl, M. C. et al. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode. Phys. Rev. B 96, 165440 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Office of Naval Research, the Defense Threat Reduction Agency (grant no. HDTRA1-15-1-0011), and the OSD Quantum Sciences and Engineering Program. A.C.K. acknowledges the support of the American Society for Engineering Education and US Naval Research Laboratory postdoctoral fellowship program. J.T.M. and B.L. acknowledge the support of the NRC Research Associateship Program at the US Naval Research Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

J.Q.G. and A.S.B. conceived of the tuning concept. J.Q.G., A.S.B., S.G.C. and D.G. further developed the tuning concept. J.Q.G. performed the QD energy tuning, spectroscopy and photon correlation measurements. M.Z. and J.Q.G. performed the electron diffraction measurements. M.Z. did the finite-element modelling of the thermal and strain profiles. A.C.K. did HfO2 ALD. A.S.B. and M.Y. grew the QDs with MBE. M.K. and C.K. fabricated the structures and measured SEM. J.T.M. and A.S.B. did AFM measurements and analysis. J.Q.G. and B.L. performed basic sample characterization.

Corresponding author

Correspondence to Joel Q. Grim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary Figs. 1–12, Supplementary references 1–7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grim, J.Q., Bracker, A.S., Zalalutdinov, M. et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019). https://doi.org/10.1038/s41563-019-0418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0418-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing