Electron-beam spectroscopy for nanophotonics

Abstract

Progress in electron-beam spectroscopies has recently enabled the study of optical excitations with combined space, energy and time resolution in the nanometre, millielectronvolt and femtosecond domain, thus providing unique access into nanophotonic structures and their detailed optical responses. These techniques rely on ~1–300 keV electron beams focused at the sample down to sub-nanometre spots, temporally compressed in wavepackets a few femtoseconds long, and in some cases controlled by ultrafast light pulses. The electrons undergo energy losses and gains (also giving rise to cathodoluminescence light emission), which are recorded to reveal the optical landscape along the beam path. This Review portraits these advances, with a focus on coherent excitations, emphasizing the increasing level of control over the electron wavefunctions and ensuing applications in the study and technological use of optically resonant modes and polaritons in nanoparticles, 2D materials and engineered nanostructures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electron–light–matter interactions.
Fig. 2: EELS and CL spectroscopy of plasmonic nanostructures.
Fig. 3: EELS phonon microscopy.
Fig. 4: Photon bunching and anti-bunching in incoherent CL.
Fig. 5: Ultrafast electron microscopy.
Fig. 6: Tailoring the electron wavefunction in the temporal and spatial domain.

References

  1. 1.

    Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum, 1996).

  2. 2.

    García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  CAS  Google Scholar 

  3. 3.

    Brenny, B. J. M., Polman, A. & García de Abajo, F. J. Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface. Phys. Rev. B 155412, 155412 (2016).

    Article  CAS  Google Scholar 

  4. 4.

    Losquin, A. et al. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett. 15, 1229–1237 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Yacobi, B. G. & Holt, D. B. Cathodoluminescence Microscopy of Inorganic Solids (Springer, 1990).

  6. 6.

    Coenen, T. & Haegel, N. M. Cathodoluminescence for the 21st century: learning more from light. Appl. Phys. Rev 4, 031103 (2017).

    Article  CAS  Google Scholar 

  7. 7.

    Kociak, M. & Zagonel, L. F. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176, 112–131 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    García de Abajo, F. J. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).

    Article  CAS  Google Scholar 

  9. 9.

    Hohenester, U., Ditlbacher, H. & Krenn, J. R. Electron-energy-loss spectra of plasmonic nanoparticles. Phys. Rev. Lett. 103, 106801 (2009).

    Article  CAS  Google Scholar 

  10. 10.

    Horl, A. et al. Tomographic imaging of the photonic environment of plasmonic nanoparticles. Nat. Commun. 8, 37 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    Zuloaga, J. & Nordlander, P. On the energy shift between near-field and far-field peak intensities in localized plasmon systems. Nano Lett. 11, 1280–1283 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).

    CAS  Article  Google Scholar 

  13. 13.

    Zabala, N., Rivacoba, A. & Echenique, P. M. Energy loss of electrons travelling through cylindrical holes. Surf. Sci 209, 465–480 (1989).

    CAS  Article  Google Scholar 

  14. 14.

    García de Abajo, F. J. Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. Phys. Rev. B 59, 3095–3107 (1999).

    Article  Google Scholar 

  15. 15.

    Muller, D. A. & Silcox, J. Delocalization in inelastic scattering. Ultramicroscopy 59, 195–213 (1995).

    CAS  Article  Google Scholar 

  16. 16.

    Schefold, J. et al. Spatial resolution of coherent cathodoluminescence super-resolution microscopy. ACS Photon. 6, 1067–1072 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    van de Hulst, H. C. Light Scattering by Small Particles (Dover, 1981).

  18. 18.

    García de Abajo, F. J. & Howie, A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002).

    Article  CAS  Google Scholar 

  19. 19.

    Waxenegger, A. J., Trügler, A. & Hohenester, U. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comp. Phys. Commun 193, 138–150 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Matyssek, C., Niegemann, J., Hergert, W. & Busch, K. Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method. Photon. Nanostruct. Fundam. Appl 9, 367–373 (2011).

    Article  Google Scholar 

  21. 21.

    Geuquet, N. & Henrard, L. EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation. Ultramicroscopy 110, 1075–1080 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Bigelow, N. W., Vaschillo, A., Iberi, V., Camden, J. P. & Masiello, D. J. Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods. ACS Nano 6, 7497–7504 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Das, P., Chini, T. K. & Pond, J. Probing higher order surface plasmon modes on individual truncated tetrahedral gold nanoparticle using cathodoluminescence imaging and spectroscopy combined with FDTD simulations. J. Phys. Chem. C 116, 15610–15619 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Cao, Y., Manjavacas, A., Large, N. & Nordlander, P. Electron energy-loss spectroscopy calculation in finite-difference time-domain package. ACS Photon 2, 369–375 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    García de Abajo, F. J. Relativistic description of valence energy losses in the interaction of fast electrons with clusters of dielectrics: multiple-scattering approach. Phys. Rev. B 60, 6103–6112 (1999).

    Article  Google Scholar 

  26. 26.

    Thomas, S. et al. Application of generalized Mie theory to EELS calculations as a tool for optimization of plasmonic structures. Plasmonics 11, 865–874 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Talebi, N. Electron-light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry. Adv. Phys. X 3, 1499438 (2018).

    Google Scholar 

  28. 28.

    Hörl, A., Trügler, A. & Hohenester, U. Tomography of particle plasmon fields from electron energy loss spectroscopy. Phys. Rev. Lett. 111, 076801 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Lourenço-Martins, H. & Kociak, M. Vibrational surface electron-energy-loss spectroscopy probes confined surface-phonon modes. Phys. Rev. X 7, 041059 (2017).

    Google Scholar 

  31. 31.

    Asenjo-Garcia, A. & García de Abajo, F. J. Dichroism in the interaction between vortex electron beams, plasmons, and molecules. Phys. Rev. Lett. 113, 066102 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    García de Abajo, F. J., Asenjo-Garcia, A. & Kociak, M. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 10, 1859–1863 (2010).

    Article  CAS  Google Scholar 

  33. 33.

    Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    Vanacore, G. M. et al. Generation and control of an ultrafast electron vortex beam via chiral plasmonic near-fields. Nat. Mater. 18, 573–579 (2019).

    CAS  Article  Google Scholar 

  35. 35.

    Cai, W., Reinhardt, O., Kaminer, I. & García de Abajo, F. J. Efficient orbital angular momentum transfer between plasmons and free electrons. Phys. Rev. B 98, 045424 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    García de Abajo, F. J. & Kociak, M. Electron energy-gain spectroscopy. New J. Phys. 10, 073035 (2008).

    Article  CAS  Google Scholar 

  38. 38.

    Vanacore, G. M. et al. Attosecond coherent control of free-electron wavefunctions using semi-infinite light fields. Nat. Commun. 9, 2694 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Batson, P. E. Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982).

    CAS  Article  Google Scholar 

  41. 41.

    Batson, P. E. A new surface plasmon resonance in clusters of small aluminum spheres. 9, 277–282 (1982).

  42. 42.

    Ouyang, F., Batson, P. E. & Isaacson, M. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992).

    CAS  Article  Google Scholar 

  43. 43.

    Ugarte, D., Colliex, C. & Trebbia, P. Surface- and interface-plasmon modes on small semiconducting spheres. Phys. Rev. B 45, 4332–4343 (1992).

    CAS  Article  Google Scholar 

  44. 44.

    Bosman, M., Keast, V. J., Watanabe, M., Maaroof, A. I. & Cortie, M. B. Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007).

    Article  CAS  Google Scholar 

  45. 45.

    Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).

    CAS  Article  Google Scholar 

  46. 46.

    Colliex, C., Kociak, M. & Stéphan, O. Electron energy loss spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 162, A1–A24 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Yamamoto, N., Araya, K. & García de Abajo, F. J. Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B 64, 205419 (2001).

    Article  CAS  Google Scholar 

  48. 48.

    Vesseur, E. J. R., de Waele, R., Kuttge, M. & Polman, A. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 7, 2843–2846 (2007).

    CAS  Article  Google Scholar 

  49. 49.

    Coenen, T., Schoen, D. T., Brenny, B. J. M., Polman, A. & Brongersma, M. L. Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures. Phys. Rev. B 93, 195429 (2016).

    Article  Google Scholar 

  50. 50.

    Rossouw, D. & Botton, G. A. Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys. Rev. Lett. 110, 66801 (2013).

    Article  CAS  Google Scholar 

  51. 51.

    Boltasseva, A. & Shalaev, V. M. Transdimensional photonics. ACS Photon 6, 1–3 (2019).

    CAS  Article  Google Scholar 

  52. 52.

    Abd El-Fattah, Z. M. et al. Plasmonics in atomically thin crystalline silver films. ACS Nano https://doi.org/10.1021/acsnano.9b01651 (2019).

    CAS  Article  Google Scholar 

  53. 53.

    Knight, M. W. et al. Aluminum plasmonic nanoantennas. Nano Lett. 12, 6000–6004 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    Pomarico, E. et al. meV Resolution in laser-assisted energy-filtered transmission electron microscopy. ACS Photon. 5, 759–764 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Martin, J. et al. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas. Nano Lett. 14, 5517–5523 (2014).

    CAS  Article  Google Scholar 

  56. 56.

    Agrawal, A. et al. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals. Nano Lett. 17, 2611–2620 (2017).

    CAS  Article  Google Scholar 

  57. 57.

    Herzing, A. A. et al. Electron energy loss spectroscopy of plasmon resonances in titanium nitride thin films. Appl. Phys. Lett. 108, 171107 (2016).

    Article  CAS  Google Scholar 

  58. 58.

    Suzuki, T. & Yamamoto, N. Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal. Opt. Express 17, 23664–23671 (2009).

    CAS  Article  Google Scholar 

  59. 59.

    Coenen, T., Vesseur, E. J. R. & Polman, A. Angle-resolved cathodoluminescence spectroscopy. Appl. Phys. Lett. 99, 4–6 (2011).

    Article  CAS  Google Scholar 

  60. 60.

    Yamamoto, N., Ohtani, S. & García de Abajo, F. J. Gap and Mie plasmons in individual silver nanospheres near a silver surface. Nano Lett. 11, 91–95 (2011).

    CAS  Article  Google Scholar 

  61. 61.

    Coenen, T., Bernal Arango, F., Koenderink, A. F. & Polman, A. Directional emission from a single plasmonic scatterer. Nat. Commun. 5, 3250 (2014).

    Article  CAS  Google Scholar 

  62. 62.

    Myroshnychenko, V., Nishio, N., García de Abajo, F. J., Förstner, J. & Yamamoto, N. Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution. ACS Nano 12, 8436–8446 (2018).

    CAS  Article  Google Scholar 

  63. 63.

    Coenen, T. & Polman, A. Polarization-sensitive cathodoluminescence Fourier microscopy. Opt. Express 20, 18679–18691 (2012).

    Article  Google Scholar 

  64. 64.

    Osorio, C. I., Coenen, T., Brenny, B. J. M., Polman, A. & Koenderink, A. F. Angle-resolved cathodoluminescence imaging polarimetry. ACS Photon 3, 147–154 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    Brenny, B. J. M., Coenen, T. & Polman, A. Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. J. Appl. Phys. 115, 244307 (2014).

    Article  CAS  Google Scholar 

  66. 66.

    Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013).

    CAS  Article  Google Scholar 

  67. 67.

    Collins, S. M. et al. Eigenmode tomography of surface charge oscillations of plasmonic nanoparticles by electron energy loss spectroscopy. ACS Photon. 2, 1628–1635 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    Atre, A. C. et al. Nanoscale optical tomography with cathodoluminescence spectroscopy. Nat. Nanotechnol. 10, 429–436 (2015).

    CAS  Article  Google Scholar 

  69. 69.

    Bashevoy, M. V. et al. Generation of traveling surface plasmon waves by free-electron impact. Nano Lett. 6, 1113–1115 (2006).

    CAS  Article  Google Scholar 

  70. 70.

    van Wijngaarden, J. T. et al. Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy. Appl. Phys. Lett. 88, 7–9 (2006).

    Google Scholar 

  71. 71.

    Pettit, R. B., Silcox, J. & Vincent, R. Measurement of surface-plasmon dispersion in oxidized aluminum films. Phys. Rev. B 11, 3116–3123 (1975).

    Article  Google Scholar 

  72. 72.

    Gu, L. et al. Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Phys. Rev. B 75, 195214 (2007).

    Article  CAS  Google Scholar 

  73. 73.

    Shekhar, P. et al. Momentum-resolved electron energy loss spectroscopy for mapping the photonic density of states. ACS Photon. 4, 1009–1014 (2017).

    CAS  Article  Google Scholar 

  74. 74.

    Hage, F. S., Hardcastle, T. P., Scott, A. J., Brydson, R. & Ramasse, Q. M. Momentum- and space-resolved high-resolution electron energy loss spectroscopy of individual single-wall carbon nanotubes. Phys. Rev. B 95, 195411 (2017).

    Article  Google Scholar 

  75. 75.

    Vesseur, E. J. R., Coenen, T., Caglayan, H., Engheta, N. & Polman, A. Experimental verification of n=0 structures for visible light. Phys. Rev. Lett. 110, 013902 (2013).

    Article  CAS  Google Scholar 

  76. 76.

    Talebi, N. et al. Excitation of mesoscopic plasmonic tapers by relativistic electrons: phase matching versus eigenmode resonances. ACS Nano 9, 7641–7648 (2015).

    CAS  Article  Google Scholar 

  77. 77.

    Schröder, B. et al. Real-space imaging of nanotip plasmons using electron energy loss spectroscopy. Phys. Rev. B 92, 085411 (2015).

    Article  CAS  Google Scholar 

  78. 78.

    Takeuchi, K. & Yamamoto, N. Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence. Opt. Express 19, 12365–12374 (2011).

    CAS  Article  Google Scholar 

  79. 79.

    Chen, C. H. & Silkox, J. Detection of optical surface guided modes in thin graphite films by high-energy electron scattering. Phys. Rev. 35, 390–393 (1975).

    CAS  Google Scholar 

  80. 80.

    Terauchi, M., Tanaka, M., Matsumoto, T. & Saito, Y. Electron energy-loss spectroscopy study of the electronic structure of boron nitride nanotubes. J. Electron Microsc. 47, 319–324 (1998).

    CAS  Article  Google Scholar 

  81. 81.

    Kociak, M., Henrard, L., Stephan, O., Suenaga, K. & Colliex, C. Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy. Phys. Rev. B 61, 936–944 (2000).

    Article  Google Scholar 

  82. 82.

    Arenal, R. et al. Experimental evidence of surface-plasmon coupling in anisotropic hollow nanoparticles. Phys. Rev. Lett 87, 075501 (2001).

    Article  CAS  Google Scholar 

  83. 83.

    Arenal, R. et al. Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Phys. Rev. Lett. 95, 127601 (2005).

    CAS  Article  Google Scholar 

  84. 84.

    Rossouw, D., Botton, G. A., Najafi, E., Lee, V. & Hitchcock, A. P. Metallic and semiconducting single-walled carbon nanotubes : differentiating individual SWCNTs by their carbon 1s spectra. ACS Nano 6, 10965–10972 (2012).

    CAS  Article  Google Scholar 

  85. 85.

    Talebi, N. et al. Wedge Dyakonov waves and Dyakonov plasmons in topological insulator Bi2Se3 probed by electron beams. ACS Nano 10, 6988–6994 (2016).

    CAS  Article  Google Scholar 

  86. 86.

    Hyun, J. K., Couillard, M., Rajendran, P., Liddell, C. M. & Muller, D. A. Measuring far-ultraviolet whispering gallery modes with high energy electrons. Appl. Phys. Lett. 93, 243106 (2008).

    Article  CAS  Google Scholar 

  87. 87.

    Coenen, T., van de Groep, J. & Polman, A. Resonant modes of single silicon nanocavities excited by electron irradiation. ACS Nano 7, 1689–1698 (2013).

    CAS  Article  Google Scholar 

  88. 88.

    Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nat. Mater. 11, 781–787 (2012).

    CAS  Article  Google Scholar 

  89. 89.

    Brenny, B. J. M., Beggs, D. M., van der Wel, R. E. C., Kuipers, L. & Polman, A. Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides. ACS Photon 3, 2112–2121 (2016).

    CAS  Article  Google Scholar 

  90. 90.

    Peng, S. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett 122, 117401 (2019).

    CAS  Article  Google Scholar 

  91. 91.

    García de Abajo, F. J. et al. Cherenkov effect as a probe of photonic nanostructures. Phys. Rev. Lett. 91, 143902 (2003).

    Article  CAS  Google Scholar 

  92. 92.

    Cha, J. J. et al. Mapping local optical densities of states in silicon photonic structures with nanoscale electron spectroscopy. Phys. Rev. B 81, 113102 (2010).

    Article  CAS  Google Scholar 

  93. 93.

    Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

    CAS  Article  Google Scholar 

  94. 94.

    Lagos, M. J., Trügler, A., Hohenester, U. & Batson, P. E. Mapping vibrational surface and bulk modes in a single nanocube. Nature 543, 529–532 (2017).

    CAS  Article  Google Scholar 

  95. 95.

    Lagos, M. J. et al. Excitation of long-wavelength surface optical vibrational modes in films, cubes and film/cube composite system using an atom-sized electron beam. Microscopy 67, i3–i13 (2018).

    CAS  Article  Google Scholar 

  96. 96.

    Caldwell, J. D. et al. Low-Loss, Extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 3690–3697 (2013).

    CAS  Article  Google Scholar 

  97. 97.

    Forbes, B. D. & Allen, L. J. Modeling energy-loss spectra due to phonon excitation. Phys. Rev. B 94, 014110 (2016).

    Article  CAS  Google Scholar 

  98. 98.

    Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 16103 (2019).

    CAS  Article  Google Scholar 

  99. 99.

    Lagos, M. J. & Batson, P. E. Thermometry with subnanometer resolution in the electron microscope using the principle of detailed balancing. Nano Lett. 18, 4556–4563 (2018).

    CAS  Article  Google Scholar 

  100. 100.

    Idrobo, J. C. et al. Temperature measurement by a nanoscale electron probe using energy gain and loss spectroscopy. Phys. Rev. Lett. 120, 95901 (2018).

    CAS  Article  Google Scholar 

  101. 101.

    Tizei, L. H. G. & Kociak, M. Spatially resolved quantum nano-optics of single photons using an electron microscope. Phys. Rev. Lett. 110, 153604 (2013).

    CAS  Article  Google Scholar 

  102. 102.

    Bourrellier, R. et al. Bright UV single photon emission at point defects in h-BN. Nano Lett. 16, 4317–4321 (2016).

    CAS  Article  Google Scholar 

  103. 103.

    Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).

    CAS  Article  Google Scholar 

  104. 104.

    Meuret, S. et al. Lifetime measurements well below the optical diffraction limit. ACS Photon. 3, 1157–1163 (2016).

    CAS  Article  Google Scholar 

  105. 105.

    Meuret, S. et al. Photon bunching reveals single-electron cathodoluminescence excitation efficiency in InGaN quantum wells. Phys. Rev. B 96, 035308 (2017).

    Article  Google Scholar 

  106. 106.

    Meuret, S. et al. Nanoscale relative emission efficiency mapping using cathodoluminescence g(2) imaging. Nano Lett. 18, 2288–2293 (2018).

    CAS  Article  Google Scholar 

  107. 107.

    Howie, A. In Electron Microscopy and Analysis 1999 (ed. Kiely, C. J.) 311–318 (IOP, 1999).

  108. 108.

    Piazza, L. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 6407 (2015).

    CAS  Article  Google Scholar 

  109. 109.

    Arbouet, A., Caruso, G. M. & Houdellier, F. Ultrafast transmission electron microscopy: historical development, instrumentation, and applications. Adv. Electron. Electron Phys. 207, 1076 (2018).

    Google Scholar 

  110. 110.

    Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. J. D. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).

    CAS  Article  Google Scholar 

  111. 111.

    Barwick, B., Park, H. S., Kwon, O., Baskin, J. S. & Zewail, A. H. 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science 322, 1227–1231 (2008).

    CAS  Article  Google Scholar 

  112. 112.

    Herman, M. A., Bimberg, D. & Christen, J. Heterointerfaces in quantum wells and epitaxial growth processes: Evaluation by luminescence techniques. J. Appl. Phys. 70, R1–R52 (1991).

    CAS  Article  Google Scholar 

  113. 113.

    Merano, M. et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature 438, 479–482 (2005).

    CAS  Article  Google Scholar 

  114. 114.

    Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light waves. Mat. Proc. Camb. Phil. Soc 29, 297–300 (1933).

    Article  Google Scholar 

  115. 115.

    Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001).

    CAS  Article  Google Scholar 

  116. 116.

    Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev 92, 1069 (1953).

    Article  Google Scholar 

  117. 117.

    Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894–899 (2018).

    CAS  Article  Google Scholar 

  118. 118.

    García de Abajo, F. J., Barwick, B. & Carbone, F. Electron diffraction by plasmon waves. Phys. Rev. B 94, 041404 (2016).

    Article  CAS  Google Scholar 

  119. 119.

    Breuer, J. & Hommelhoff, P. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett 111, 134803 (2013).

    Article  CAS  Google Scholar 

  120. 120.

    Peralta, E. A. et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94 (2013).

    CAS  Article  Google Scholar 

  121. 121.

    Gliserin, A., Apolonski, A., Krausz, F. & Baum, P. Compression of single-electron pulses with a microwave cavity. New J. Phys. 14, 073055 (2012).

    Article  Google Scholar 

  122. 122.

    Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).

    CAS  Article  Google Scholar 

  123. 123.

    Ryabov, A. & Baum, P. Electron microscopy of electromagnetic waveforms. Science 353, 374–377 (2016).

    CAS  Article  Google Scholar 

  124. 124.

    Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

    CAS  Article  Google Scholar 

  125. 125.

    Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).

    CAS  Article  Google Scholar 

  126. 126.

    Bliokh, K. Y. et al. Theory and applications of free-electron vortex states. Phys. Rep. 690, 1–70 (2017).

    CAS  Article  Google Scholar 

  127. 127.

    McMorran, B. J. et al. Electron vortex beams wih high quanta of orbital angular momentum. Science 331, 192–195 (2011).

    CAS  Article  Google Scholar 

  128. 128.

    Béché, A., Van Boxem, R., Van Tendeloo, G. & Verbeeck, J. Magnetic monopole field exposed by electrons. Nat. Phys 10, 26–29 (2013).

    Article  CAS  Google Scholar 

  129. 129.

    Asenjo-Garcia, A. & García de Abajo, F. J. Plasmon electron energy-gain spectroscopy. New J. Phys. 15, 103021 (2013).

    Article  CAS  Google Scholar 

  130. 130.

    Ugarte, D. & Ducati, C. Controlling multipolar surface plasmon excitation through the azimuthal phase structure of electron vortex beams. Phys. Rev. B 93, 205418 (2016).

    Article  CAS  Google Scholar 

  131. 131.

    Voloch-Bloch, N., Lereah, Y., Lilach, Y., Gover, A. & Arie, A. Generation of electron Airy beams. Nature 494, 331–335 (2013).

    CAS  Article  Google Scholar 

  132. 132.

    Bliokh, K. Y., Schattschneider, P., Verbeeck, J. & Nori, F. Electron vortex beams in a magnetic field: a new twist on Landau levels and Aharonov-Bohm states. Phys. Rev. X 2, 041011 (2012).

    Google Scholar 

  133. 133.

    Shiloh, R., Lereah, Y., Lilach, Y. & Arie, A. Sculpturing the electron wavefunction using nanoscale phase masks. Ultramicroscopy 144, 26–31 (2014).

    CAS  Article  Google Scholar 

  134. 134.

    Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017).

    CAS  Article  Google Scholar 

  135. 135.

    Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photon. 11, 793–797 (2017).

    CAS  Article  Google Scholar 

  136. 136.

    Kohl, H. Image formation by inelastically scattered electrons: image of a surface plasmon. Ultramicroscopy 11, 53–65 (1983).

    Article  Google Scholar 

  137. 137.

    Ritchie, R. H., Howie, A. & Ritchie, R. H. Inelastic scattering probabilities in scanning transmission electron microscopy. Philos. Mag. A 58, 753–767 (1988).

    Article  Google Scholar 

  138. 138.

    Krehl, J. et al. Spectral field mapping in plasmonic nanostructures with nanometer resolution. Nat. Commun. 9, 4207 (2018).

    CAS  Article  Google Scholar 

  139. 139.

    Verbeeck, J. et al. Demonstration of a 2 × 2 programmable phase plate for electrons. Ultramicroscopy 190, 58–65 (2018).

    CAS  Article  Google Scholar 

  140. 140.

    Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 (2017).

    CAS  Article  Google Scholar 

  141. 141.

    Vogelsang, J., Hergert, G., Wang, D., Groß, P. & Lienau, C. Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy. Light Sci. Appl 7, 55 (2018).

    Article  CAS  Google Scholar 

  142. 142.

    Talebi, N. Spectral interferometry with electron microscopes. Sci. Rep. 6, 33874 (2016).

    CAS  Article  Google Scholar 

  143. 143.

    Talebi, N. et al. Merging transformation optics with electron-drive photon sources. Nat. Commun. 10, 599 (2019).

    Article  CAS  Google Scholar 

  144. 144.

    Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys 14, 252 (2017).

    Article  CAS  Google Scholar 

  145. 145.

    Kubo, A. et al. Femtosecond imaging of surface plasmon femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano 5, 1123–1127 (2005).

    CAS  Google Scholar 

  146. 146.

    Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017).

    CAS  Article  Google Scholar 

  147. 147.

    Li, C., Subramanian, G. & Spence, J. C. H. Time-resolved spectra from millivolt EELS data. Microsc. Microanal. 20, 837–846 (2014).

    Article  CAS  Google Scholar 

  148. 148.

    García de Abajo, F. J. Momentum transfer to small particles by passing electron beams. 70, 115422 (2004).

  149. 149.

    Lagos, M. J. et al. Attosecond and femtosecond forces exerted on gold nanoparticles induced by swift electrons. Phys. Rev. B 93, 205440 (2016).

    Article  CAS  Google Scholar 

  150. 150.

    Caruso, G. M., Houdellier, F., Abeilhou, P. & Arbouet, A. Development of an ultrafast electron source based on a cold-field emission gun for ultrafast coherent TEM. Appl. Phys. Lett. 111, 023101 (2017).

    Article  CAS  Google Scholar 

  151. 151.

    Moerland, R. J. et al. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states. Opt. Express 24, 24760–24772 (2016).

    CAS  Article  Google Scholar 

  152. 152.

    Meuret, S. et al. Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope. Ultramicroscopy 197, 28–38 (2018).

    Article  CAS  Google Scholar 

  153. 153.

    Weppelman, I. G. C., Moerland, R. J., Hoogenboom, J. P. & Kruit, P. Concept and design of a beam blanker with integrated photoconductive switch for ultrafast electron microscopy. Ultramicroscopy 184, 8–17 (2018).

    CAS  Article  Google Scholar 

  154. 154.

    van Rens, J. F. M. et al. Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM110 mode for ultrafast electron microscopy. Ultramicroscopy 184, 77–89 (2018).

    Article  CAS  Google Scholar 

  155. 155.

    Kruit, P. et al. Designs for a quantum electron microscope. Ultramicroscopy 164, 31–45 (2016).

    CAS  Article  Google Scholar 

  156. 156.

    Tizei, L. H. G., Lin, Y.-C., Lu, A.-Y., Li, L.-J. & Suenaga, K. Electron energy loss spectroscopy of excitons in two-dimensional-semiconductors as a function of temperature. Appl. Phys. Lett. 108, 163107 (2016).

    Article  CAS  Google Scholar 

  157. 157.

    Govyadinov, A. A. et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun. 8, 95 (2017).

    Article  CAS  Google Scholar 

  158. 158.

    Fabbri, F. et al. Novel near-infrared emission from crystal defects in MoS2 multilayer flakes. Nat. Commun. 7, 13044 (2016).

    CAS  Article  Google Scholar 

  159. 159.

    Zheng, S. et al. Giant enhancement of cathodoluminescence of monolayer transitional metal dichalcogenides semiconductors. Nano Lett. 17, 6475–6480 (2017).

    CAS  Article  Google Scholar 

  160. 160.

    Douillard, L. et al. Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett. 8, 935–940 (2008).

    CAS  Article  Google Scholar 

  161. 161.

    Mårsell, E. et al. Nanoscale imaging of local few-femtosecond near-field dynamics within a single plasmonic nanoantenna. Nano Lett. 15, 6601–6608 (2015).

    Article  CAS  Google Scholar 

  162. 162.

    Losquin, A. & Lummen, T. T. A. Electron microscopy methods for space-, energy-, and time-resolved plasmonics. Front. Phys 12, 127301 (2017).

    Article  Google Scholar 

  163. 163.

    Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    CAS  Article  Google Scholar 

  164. 164.

    Rusimova, K. R. et al. Regulating the femtosecond excited-state lifetime of a single molecule. Science 361, 1012–1016 (2018).

    CAS  Article  Google Scholar 

  165. 165.

    Le Moal, E. et al. An electrically excited nanoscale light source with active angular control of the emitted light. Nano Lett. 13, 4198–4205 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of S. Meuret and T. Coenen in preparing this Review. Future visions described in this paper partly originate from presentations and a panel discussion session at the workshop ‘Electron Beam Spectroscopy for Nanophotonics (EBSN)’ held in Sitges, Spain, during 25–27 October 2017. We thank the workshop participants for providing their insights; in particular the discussion panellists J. Etheridge, I. Kaminer, C. Ropers and J. Verbeeck. The Dutch part of this work is part of the research programme of the Netherlands Organization for Scientific Research (NWO); the French part has received support from the French state through the National Agency for Research under the programme of future investment EQUIPEX, and TEMPOS-CHROMATEM with the reference ANR-10-EQPX-50; the Spanish part is supported by MINECO (MAT2017-88492-R and SEV2015-0522), the Catalan CERCA programme and Fundació Privada Cellex. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements 695343 and 789104).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Albert Polman.

Ethics declarations

Competing interests

A.P. is co-founder and co-owner of Delmic BV, a company that produces commercial cathodoluminescence systems.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polman, A., Kociak, M. & García de Abajo, F.J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019). https://doi.org/10.1038/s41563-019-0409-1

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing