Abstract
Progress in electron-beam spectroscopies has recently enabled the study of optical excitations with combined space, energy and time resolution in the nanometre, millielectronvolt and femtosecond domain, thus providing unique access into nanophotonic structures and their detailed optical responses. These techniques rely on ~1–300 keV electron beams focused at the sample down to sub-nanometre spots, temporally compressed in wavepackets a few femtoseconds long, and in some cases controlled by ultrafast light pulses. The electrons undergo energy losses and gains (also giving rise to cathodoluminescence light emission), which are recorded to reveal the optical landscape along the beam path. This Review portraits these advances, with a focus on coherent excitations, emphasizing the increasing level of control over the electron wavefunctions and ensuing applications in the study and technological use of optically resonant modes and polaritons in nanoparticles, 2D materials and engineered nanostructures.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Alignment-invariant signal reality reconstruction in hyperspectral imaging using a deep convolutional neural network architecture
Scientific Reports Open Access 19 October 2022
-
Free electrons can induce entanglement between photons
npj Quantum Information Open Access 23 March 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum, 1996).
García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).
Brenny, B. J. M., Polman, A. & García de Abajo, F. J. Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface. Phys. Rev. B 155412, 155412 (2016).
Losquin, A. et al. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett. 15, 1229–1237 (2015).
Yacobi, B. G. & Holt, D. B. Cathodoluminescence Microscopy of Inorganic Solids (Springer, 1990).
Coenen, T. & Haegel, N. M. Cathodoluminescence for the 21st century: learning more from light. Appl. Phys. Rev 4, 031103 (2017).
Kociak, M. & Zagonel, L. F. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176, 112–131 (2017).
García de Abajo, F. J. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).
Hohenester, U., Ditlbacher, H. & Krenn, J. R. Electron-energy-loss spectra of plasmonic nanoparticles. Phys. Rev. Lett. 103, 106801 (2009).
Horl, A. et al. Tomographic imaging of the photonic environment of plasmonic nanoparticles. Nat. Commun. 8, 37 (2017).
Zuloaga, J. & Nordlander, P. On the energy shift between near-field and far-field peak intensities in localized plasmon systems. Nano Lett. 11, 1280–1283 (2011).
Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).
Zabala, N., Rivacoba, A. & Echenique, P. M. Energy loss of electrons travelling through cylindrical holes. Surf. Sci 209, 465–480 (1989).
García de Abajo, F. J. Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. Phys. Rev. B 59, 3095–3107 (1999).
Muller, D. A. & Silcox, J. Delocalization in inelastic scattering. Ultramicroscopy 59, 195–213 (1995).
Schefold, J. et al. Spatial resolution of coherent cathodoluminescence super-resolution microscopy. ACS Photon. 6, 1067–1072 (2019).
van de Hulst, H. C. Light Scattering by Small Particles (Dover, 1981).
García de Abajo, F. J. & Howie, A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002).
Waxenegger, A. J., Trügler, A. & Hohenester, U. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comp. Phys. Commun 193, 138–150 (2015).
Matyssek, C., Niegemann, J., Hergert, W. & Busch, K. Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method. Photon. Nanostruct. Fundam. Appl 9, 367–373 (2011).
Geuquet, N. & Henrard, L. EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation. Ultramicroscopy 110, 1075–1080 (2010).
Bigelow, N. W., Vaschillo, A., Iberi, V., Camden, J. P. & Masiello, D. J. Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods. ACS Nano 6, 7497–7504 (2012).
Das, P., Chini, T. K. & Pond, J. Probing higher order surface plasmon modes on individual truncated tetrahedral gold nanoparticle using cathodoluminescence imaging and spectroscopy combined with FDTD simulations. J. Phys. Chem. C 116, 15610–15619 (2012).
Cao, Y., Manjavacas, A., Large, N. & Nordlander, P. Electron energy-loss spectroscopy calculation in finite-difference time-domain package. ACS Photon 2, 369–375 (2015).
García de Abajo, F. J. Relativistic description of valence energy losses in the interaction of fast electrons with clusters of dielectrics: multiple-scattering approach. Phys. Rev. B 60, 6103–6112 (1999).
Thomas, S. et al. Application of generalized Mie theory to EELS calculations as a tool for optimization of plasmonic structures. Plasmonics 11, 865–874 (2016).
Talebi, N. Electron-light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry. Adv. Phys. X 3, 1499438 (2018).
Hörl, A., Trügler, A. & Hohenester, U. Tomography of particle plasmon fields from electron energy loss spectroscopy. Phys. Rev. Lett. 111, 076801 (2013).
Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).
Lourenço-Martins, H. & Kociak, M. Vibrational surface electron-energy-loss spectroscopy probes confined surface-phonon modes. Phys. Rev. X 7, 041059 (2017).
Asenjo-Garcia, A. & García de Abajo, F. J. Dichroism in the interaction between vortex electron beams, plasmons, and molecules. Phys. Rev. Lett. 113, 066102 (2014).
García de Abajo, F. J., Asenjo-Garcia, A. & Kociak, M. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 10, 1859–1863 (2010).
Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010).
Vanacore, G. M. et al. Generation and control of an ultrafast electron vortex beam via chiral plasmonic near-fields. Nat. Mater. 18, 573–579 (2019).
Cai, W., Reinhardt, O., Kaminer, I. & García de Abajo, F. J. Efficient orbital angular momentum transfer between plasmons and free electrons. Phys. Rev. B 98, 045424 (2018).
Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).
García de Abajo, F. J. & Kociak, M. Electron energy-gain spectroscopy. New J. Phys. 10, 073035 (2008).
Vanacore, G. M. et al. Attosecond coherent control of free-electron wavefunctions using semi-infinite light fields. Nat. Commun. 9, 2694 (2018).
Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).
Batson, P. E. Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982).
Batson, P. E. A new surface plasmon resonance in clusters of small aluminum spheres. 9, 277–282 (1982).
Ouyang, F., Batson, P. E. & Isaacson, M. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992).
Ugarte, D., Colliex, C. & Trebbia, P. Surface- and interface-plasmon modes on small semiconducting spheres. Phys. Rev. B 45, 4332–4343 (1992).
Bosman, M., Keast, V. J., Watanabe, M., Maaroof, A. I. & Cortie, M. B. Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007).
Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).
Colliex, C., Kociak, M. & Stéphan, O. Electron energy loss spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 162, A1–A24 (2016).
Yamamoto, N., Araya, K. & García de Abajo, F. J. Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B 64, 205419 (2001).
Vesseur, E. J. R., de Waele, R., Kuttge, M. & Polman, A. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 7, 2843–2846 (2007).
Coenen, T., Schoen, D. T., Brenny, B. J. M., Polman, A. & Brongersma, M. L. Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures. Phys. Rev. B 93, 195429 (2016).
Rossouw, D. & Botton, G. A. Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys. Rev. Lett. 110, 66801 (2013).
Boltasseva, A. & Shalaev, V. M. Transdimensional photonics. ACS Photon 6, 1–3 (2019).
Abd El-Fattah, Z. M. et al. Plasmonics in atomically thin crystalline silver films. ACS Nano https://doi.org/10.1021/acsnano.9b01651 (2019).
Knight, M. W. et al. Aluminum plasmonic nanoantennas. Nano Lett. 12, 6000–6004 (2012).
Pomarico, E. et al. meV Resolution in laser-assisted energy-filtered transmission electron microscopy. ACS Photon. 5, 759–764 (2018).
Martin, J. et al. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas. Nano Lett. 14, 5517–5523 (2014).
Agrawal, A. et al. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals. Nano Lett. 17, 2611–2620 (2017).
Herzing, A. A. et al. Electron energy loss spectroscopy of plasmon resonances in titanium nitride thin films. Appl. Phys. Lett. 108, 171107 (2016).
Suzuki, T. & Yamamoto, N. Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal. Opt. Express 17, 23664–23671 (2009).
Coenen, T., Vesseur, E. J. R. & Polman, A. Angle-resolved cathodoluminescence spectroscopy. Appl. Phys. Lett. 99, 4–6 (2011).
Yamamoto, N., Ohtani, S. & García de Abajo, F. J. Gap and Mie plasmons in individual silver nanospheres near a silver surface. Nano Lett. 11, 91–95 (2011).
Coenen, T., Bernal Arango, F., Koenderink, A. F. & Polman, A. Directional emission from a single plasmonic scatterer. Nat. Commun. 5, 3250 (2014).
Myroshnychenko, V., Nishio, N., García de Abajo, F. J., Förstner, J. & Yamamoto, N. Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution. ACS Nano 12, 8436–8446 (2018).
Coenen, T. & Polman, A. Polarization-sensitive cathodoluminescence Fourier microscopy. Opt. Express 20, 18679–18691 (2012).
Osorio, C. I., Coenen, T., Brenny, B. J. M., Polman, A. & Koenderink, A. F. Angle-resolved cathodoluminescence imaging polarimetry. ACS Photon 3, 147–154 (2016).
Brenny, B. J. M., Coenen, T. & Polman, A. Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. J. Appl. Phys. 115, 244307 (2014).
Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013).
Collins, S. M. et al. Eigenmode tomography of surface charge oscillations of plasmonic nanoparticles by electron energy loss spectroscopy. ACS Photon. 2, 1628–1635 (2015).
Atre, A. C. et al. Nanoscale optical tomography with cathodoluminescence spectroscopy. Nat. Nanotechnol. 10, 429–436 (2015).
Bashevoy, M. V. et al. Generation of traveling surface plasmon waves by free-electron impact. Nano Lett. 6, 1113–1115 (2006).
van Wijngaarden, J. T. et al. Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy. Appl. Phys. Lett. 88, 7–9 (2006).
Pettit, R. B., Silcox, J. & Vincent, R. Measurement of surface-plasmon dispersion in oxidized aluminum films. Phys. Rev. B 11, 3116–3123 (1975).
Gu, L. et al. Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Phys. Rev. B 75, 195214 (2007).
Shekhar, P. et al. Momentum-resolved electron energy loss spectroscopy for mapping the photonic density of states. ACS Photon. 4, 1009–1014 (2017).
Hage, F. S., Hardcastle, T. P., Scott, A. J., Brydson, R. & Ramasse, Q. M. Momentum- and space-resolved high-resolution electron energy loss spectroscopy of individual single-wall carbon nanotubes. Phys. Rev. B 95, 195411 (2017).
Vesseur, E. J. R., Coenen, T., Caglayan, H., Engheta, N. & Polman, A. Experimental verification of n=0 structures for visible light. Phys. Rev. Lett. 110, 013902 (2013).
Talebi, N. et al. Excitation of mesoscopic plasmonic tapers by relativistic electrons: phase matching versus eigenmode resonances. ACS Nano 9, 7641–7648 (2015).
Schröder, B. et al. Real-space imaging of nanotip plasmons using electron energy loss spectroscopy. Phys. Rev. B 92, 085411 (2015).
Takeuchi, K. & Yamamoto, N. Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence. Opt. Express 19, 12365–12374 (2011).
Chen, C. H. & Silkox, J. Detection of optical surface guided modes in thin graphite films by high-energy electron scattering. Phys. Rev. 35, 390–393 (1975).
Terauchi, M., Tanaka, M., Matsumoto, T. & Saito, Y. Electron energy-loss spectroscopy study of the electronic structure of boron nitride nanotubes. J. Electron Microsc. 47, 319–324 (1998).
Kociak, M., Henrard, L., Stephan, O., Suenaga, K. & Colliex, C. Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy. Phys. Rev. B 61, 936–944 (2000).
Arenal, R. et al. Experimental evidence of surface-plasmon coupling in anisotropic hollow nanoparticles. Phys. Rev. Lett 87, 075501 (2001).
Arenal, R. et al. Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Phys. Rev. Lett. 95, 127601 (2005).
Rossouw, D., Botton, G. A., Najafi, E., Lee, V. & Hitchcock, A. P. Metallic and semiconducting single-walled carbon nanotubes : differentiating individual SWCNTs by their carbon 1s spectra. ACS Nano 6, 10965–10972 (2012).
Talebi, N. et al. Wedge Dyakonov waves and Dyakonov plasmons in topological insulator Bi2Se3 probed by electron beams. ACS Nano 10, 6988–6994 (2016).
Hyun, J. K., Couillard, M., Rajendran, P., Liddell, C. M. & Muller, D. A. Measuring far-ultraviolet whispering gallery modes with high energy electrons. Appl. Phys. Lett. 93, 243106 (2008).
Coenen, T., van de Groep, J. & Polman, A. Resonant modes of single silicon nanocavities excited by electron irradiation. ACS Nano 7, 1689–1698 (2013).
Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nat. Mater. 11, 781–787 (2012).
Brenny, B. J. M., Beggs, D. M., van der Wel, R. E. C., Kuipers, L. & Polman, A. Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides. ACS Photon 3, 2112–2121 (2016).
Peng, S. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett 122, 117401 (2019).
García de Abajo, F. J. et al. Cherenkov effect as a probe of photonic nanostructures. Phys. Rev. Lett. 91, 143902 (2003).
Cha, J. J. et al. Mapping local optical densities of states in silicon photonic structures with nanoscale electron spectroscopy. Phys. Rev. B 81, 113102 (2010).
Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).
Lagos, M. J., Trügler, A., Hohenester, U. & Batson, P. E. Mapping vibrational surface and bulk modes in a single nanocube. Nature 543, 529–532 (2017).
Lagos, M. J. et al. Excitation of long-wavelength surface optical vibrational modes in films, cubes and film/cube composite system using an atom-sized electron beam. Microscopy 67, i3–i13 (2018).
Caldwell, J. D. et al. Low-Loss, Extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 3690–3697 (2013).
Forbes, B. D. & Allen, L. J. Modeling energy-loss spectra due to phonon excitation. Phys. Rev. B 94, 014110 (2016).
Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 16103 (2019).
Lagos, M. J. & Batson, P. E. Thermometry with subnanometer resolution in the electron microscope using the principle of detailed balancing. Nano Lett. 18, 4556–4563 (2018).
Idrobo, J. C. et al. Temperature measurement by a nanoscale electron probe using energy gain and loss spectroscopy. Phys. Rev. Lett. 120, 95901 (2018).
Tizei, L. H. G. & Kociak, M. Spatially resolved quantum nano-optics of single photons using an electron microscope. Phys. Rev. Lett. 110, 153604 (2013).
Bourrellier, R. et al. Bright UV single photon emission at point defects in h-BN. Nano Lett. 16, 4317–4321 (2016).
Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).
Meuret, S. et al. Lifetime measurements well below the optical diffraction limit. ACS Photon. 3, 1157–1163 (2016).
Meuret, S. et al. Photon bunching reveals single-electron cathodoluminescence excitation efficiency in InGaN quantum wells. Phys. Rev. B 96, 035308 (2017).
Meuret, S. et al. Nanoscale relative emission efficiency mapping using cathodoluminescence g(2) imaging. Nano Lett. 18, 2288–2293 (2018).
Howie, A. In Electron Microscopy and Analysis 1999 (ed. Kiely, C. J.) 311–318 (IOP, 1999).
Piazza, L. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 6407 (2015).
Arbouet, A., Caruso, G. M. & Houdellier, F. Ultrafast transmission electron microscopy: historical development, instrumentation, and applications. Adv. Electron. Electron Phys. 207, 1076 (2018).
Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. J. D. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).
Barwick, B., Park, H. S., Kwon, O., Baskin, J. S. & Zewail, A. H. 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science 322, 1227–1231 (2008).
Herman, M. A., Bimberg, D. & Christen, J. Heterointerfaces in quantum wells and epitaxial growth processes: Evaluation by luminescence techniques. J. Appl. Phys. 70, R1–R52 (1991).
Merano, M. et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature 438, 479–482 (2005).
Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light waves. Mat. Proc. Camb. Phil. Soc 29, 297–300 (1933).
Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001).
Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev 92, 1069 (1953).
Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894–899 (2018).
García de Abajo, F. J., Barwick, B. & Carbone, F. Electron diffraction by plasmon waves. Phys. Rev. B 94, 041404 (2016).
Breuer, J. & Hommelhoff, P. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett 111, 134803 (2013).
Peralta, E. A. et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94 (2013).
Gliserin, A., Apolonski, A., Krausz, F. & Baum, P. Compression of single-electron pulses with a microwave cavity. New J. Phys. 14, 073055 (2012).
Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).
Ryabov, A. & Baum, P. Electron microscopy of electromagnetic waveforms. Science 353, 374–377 (2016).
Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).
Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).
Bliokh, K. Y. et al. Theory and applications of free-electron vortex states. Phys. Rep. 690, 1–70 (2017).
McMorran, B. J. et al. Electron vortex beams wih high quanta of orbital angular momentum. Science 331, 192–195 (2011).
Béché, A., Van Boxem, R., Van Tendeloo, G. & Verbeeck, J. Magnetic monopole field exposed by electrons. Nat. Phys 10, 26–29 (2013).
Asenjo-Garcia, A. & García de Abajo, F. J. Plasmon electron energy-gain spectroscopy. New J. Phys. 15, 103021 (2013).
Ugarte, D. & Ducati, C. Controlling multipolar surface plasmon excitation through the azimuthal phase structure of electron vortex beams. Phys. Rev. B 93, 205418 (2016).
Voloch-Bloch, N., Lereah, Y., Lilach, Y., Gover, A. & Arie, A. Generation of electron Airy beams. Nature 494, 331–335 (2013).
Bliokh, K. Y., Schattschneider, P., Verbeeck, J. & Nori, F. Electron vortex beams in a magnetic field: a new twist on Landau levels and Aharonov-Bohm states. Phys. Rev. X 2, 041011 (2012).
Shiloh, R., Lereah, Y., Lilach, Y. & Arie, A. Sculpturing the electron wavefunction using nanoscale phase masks. Ultramicroscopy 144, 26–31 (2014).
Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017).
Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photon. 11, 793–797 (2017).
Kohl, H. Image formation by inelastically scattered electrons: image of a surface plasmon. Ultramicroscopy 11, 53–65 (1983).
Ritchie, R. H., Howie, A. & Ritchie, R. H. Inelastic scattering probabilities in scanning transmission electron microscopy. Philos. Mag. A 58, 753–767 (1988).
Krehl, J. et al. Spectral field mapping in plasmonic nanostructures with nanometer resolution. Nat. Commun. 9, 4207 (2018).
Verbeeck, J. et al. Demonstration of a 2 × 2 programmable phase plate for electrons. Ultramicroscopy 190, 58–65 (2018).
Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 (2017).
Vogelsang, J., Hergert, G., Wang, D., Groß, P. & Lienau, C. Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy. Light Sci. Appl 7, 55 (2018).
Talebi, N. Spectral interferometry with electron microscopes. Sci. Rep. 6, 33874 (2016).
Talebi, N. et al. Merging transformation optics with electron-drive photon sources. Nat. Commun. 10, 599 (2019).
Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys 14, 252 (2017).
Kubo, A. et al. Femtosecond imaging of surface plasmon femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano 5, 1123–1127 (2005).
Spektor, G. et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017).
Li, C., Subramanian, G. & Spence, J. C. H. Time-resolved spectra from millivolt EELS data. Microsc. Microanal. 20, 837–846 (2014).
García de Abajo, F. J. Momentum transfer to small particles by passing electron beams. 70, 115422 (2004).
Lagos, M. J. et al. Attosecond and femtosecond forces exerted on gold nanoparticles induced by swift electrons. Phys. Rev. B 93, 205440 (2016).
Caruso, G. M., Houdellier, F., Abeilhou, P. & Arbouet, A. Development of an ultrafast electron source based on a cold-field emission gun for ultrafast coherent TEM. Appl. Phys. Lett. 111, 023101 (2017).
Moerland, R. J. et al. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states. Opt. Express 24, 24760–24772 (2016).
Meuret, S. et al. Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope. Ultramicroscopy 197, 28–38 (2018).
Weppelman, I. G. C., Moerland, R. J., Hoogenboom, J. P. & Kruit, P. Concept and design of a beam blanker with integrated photoconductive switch for ultrafast electron microscopy. Ultramicroscopy 184, 8–17 (2018).
van Rens, J. F. M. et al. Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM110 mode for ultrafast electron microscopy. Ultramicroscopy 184, 77–89 (2018).
Kruit, P. et al. Designs for a quantum electron microscope. Ultramicroscopy 164, 31–45 (2016).
Tizei, L. H. G., Lin, Y.-C., Lu, A.-Y., Li, L.-J. & Suenaga, K. Electron energy loss spectroscopy of excitons in two-dimensional-semiconductors as a function of temperature. Appl. Phys. Lett. 108, 163107 (2016).
Govyadinov, A. A. et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun. 8, 95 (2017).
Fabbri, F. et al. Novel near-infrared emission from crystal defects in MoS2 multilayer flakes. Nat. Commun. 7, 13044 (2016).
Zheng, S. et al. Giant enhancement of cathodoluminescence of monolayer transitional metal dichalcogenides semiconductors. Nano Lett. 17, 6475–6480 (2017).
Douillard, L. et al. Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett. 8, 935–940 (2008).
Mårsell, E. et al. Nanoscale imaging of local few-femtosecond near-field dynamics within a single plasmonic nanoantenna. Nano Lett. 15, 6601–6608 (2015).
Losquin, A. & Lummen, T. T. A. Electron microscopy methods for space-, energy-, and time-resolved plasmonics. Front. Phys 12, 127301 (2017).
Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).
Rusimova, K. R. et al. Regulating the femtosecond excited-state lifetime of a single molecule. Science 361, 1012–1016 (2018).
Le Moal, E. et al. An electrically excited nanoscale light source with active angular control of the emitted light. Nano Lett. 13, 4198–4205 (2013).
Acknowledgements
We gratefully acknowledge the assistance of S. Meuret and T. Coenen in preparing this Review. Future visions described in this paper partly originate from presentations and a panel discussion session at the workshop ‘Electron Beam Spectroscopy for Nanophotonics (EBSN)’ held in Sitges, Spain, during 25–27 October 2017. We thank the workshop participants for providing their insights; in particular the discussion panellists J. Etheridge, I. Kaminer, C. Ropers and J. Verbeeck. The Dutch part of this work is part of the research programme of the Netherlands Organization for Scientific Research (NWO); the French part has received support from the French state through the National Agency for Research under the programme of future investment EQUIPEX, and TEMPOS-CHROMATEM with the reference ANR-10-EQPX-50; the Spanish part is supported by MINECO (MAT2017-88492-R and SEV2015-0522), the Catalan CERCA programme and Fundació Privada Cellex. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements 695343 and 789104).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
A.P. is co-founder and co-owner of Delmic BV, a company that produces commercial cathodoluminescence systems.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Polman, A., Kociak, M. & García de Abajo, F.J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019). https://doi.org/10.1038/s41563-019-0409-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-019-0409-1
This article is cited by
-
Photonic flatband resonances for free-electron radiation
Nature (2023)
-
Plasmon-mediated chemical reactions
Nature Reviews Methods Primers (2023)
-
Ultrathin quantum light source with van der Waals NbOCl2 crystal
Nature (2023)
-
How to light up the electron microscope
Nature Physics (2023)
-
Quantum recoil in free-electron interactions with atomic lattices
Nature Photonics (2023)