Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scientific, technological and economic issues in metal printing and their solutions

3D printing is now widely used in aerospace, healthcare, energy, automotive and other industries. Metal printing, in particular, is the fastest growing sector, yet its development presents scientific, technological and economic challenges that must be understood and addressed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Current status of metal printing.

SciePro/Science Photo Library (hip joint implant); GE Aviation (fuel nozzle). Adapted from ref. 8, Springer Nature Ltd (hydraulic valve); and ref. 9, Springer Nature Ltd (gas turbine blades)

Fig. 2: Challenges in metal printing.
Fig. 3: Cost competitiveness of metal printing.

References

  1. 1.

    DebRoy, T. et al. Prog. Mater. Sci. 92, 112–224 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    Milewski, J. O. Additive Manufacturing of Metals (Springer, 2017).

  3. 3.

    Roca, J. B., Vaishnav, P., Fuchs, E. R. H. & Morgan, M. G. Nat. Mater. 15, 815–818 (2016).

    Article  Google Scholar 

  4. 4.

    Huang, Y., Leu, M. C., Mazumder, J. & Donmez, A. J. Manuf. Sci. Eng. 137, 014001 (2015).

    Article  Google Scholar 

  5. 5.

    Frazier, W. E. J. Mater. Eng. Perform. 23, 1917–1928 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Pollock, T. M. Nat. Mater. 15, 809–815 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Verhoef, L. A., Budde, B. W., Chockalingam, C., Nodar, B. G. & van Wijk, J. M. Energy Policy 112, 349–360 (2018).

    Article  Google Scholar 

  8. 8.

    Duda, T. & Venkat Raghavan, L. AI Soc. 33, 241–252 (2018).

    Article  Google Scholar 

  9. 9.

    Murr, L. E. Metallogr. Microstr. Anal. 7, 103–132 (2018).

    Article  Google Scholar 

  10. 10.

    Gu, D. D., Meiners, W., Wissenbach, K. & Poprawe, R. Int. Mater. Rev. 57, 133–164 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Wohlers, T. T. et al. Wohlers Report 2018 (Wohlers Associates, 2018).

  12. 12.

    Mukherjee, T. & DebRoy, T. Appl. Mater. Today 14, 59–65 (March, 2019).

  13. 13.

    David, S. A. & DebRoy, T. Science 257, 497–502 (1992).

    CAS  Article  Google Scholar 

  14. 14.

    Liu, L. et al. Mater. Today 21, 354–361 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Mukherjee, T., Zuback, J. S., De, A. & DebRoy, T. Sci. Rep. 6, 19717 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Thijs, L. et al. Acta Mater. 58, 3303–3312 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Martin, J. H. et al. Nature 549, 365–369 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Hitzler, L., Merkel, M., Hall, W. & Öchsner, A. Adv. Eng. Mater. 20, 1700658 (2018).

    Article  Google Scholar 

  19. 19.

    Thompson, M. K. et al. CIRP Ann. 65, 737–760 (2016).

    Article  Google Scholar 

  20. 20.

    Lefky, C. S., Zucker, B., Nassar, A. R., Simpson, T. W. & Hildreth, O. J. Acta Mater. 153, 1–7 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Scime, L. & Beuth, J. Addit. Manuf. 25, 151–165 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Berman, B. Bus. Horiz. 55, 155–162 (2012).

    Article  Google Scholar 

  23. 23.

    Bours, J., Adzima, B., Gladwin, S., Cabral, J. & Mau, S. J. Ind. Ecol. 21, S25–S36 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Stanislawska, M. et al. Microchem. J. 135, 1–9 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Zeidler-Erdely, P. C., Erdely, A. & Antonini, J. M. J. Immunotoxicol. 9, 411–425 (2012).

    Article  Google Scholar 

  26. 26.

    Baumers, M., Dickens, P., Tuck, C. & Hague, R. Technol. Forecast. Social Change. 102, 193–201 (2016).

    Article  Google Scholar 

  27. 27.

    Hopkinson, N. & Dickens, P. Proc. Inst. Mech. Eng. C 217, 31–39 (2003).

    Article  Google Scholar 

  28. 28.

    Atzeni, E. & Salmi, A. Int. J. Adv. Manufact. Technol. 62, 1147–1155 (2012).

    Article  Google Scholar 

  29. 29.

    Piili, H., Happonen, A., Väistö, T. & Venkataramanan, V. Phys. Procedia 78, 388–396 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Lindemann, C., Jahnke, U., Moi, M. & Koch, R. in Proc. 24th Annual Int. Solid Freeform Fabrication Symp (Laboratory for Freeform Fabrication, 2013).

  31. 31.

    Pinkerton, A. J. Opt. Laser Technol. 78, 25–32 (2016).

    Article  Google Scholar 

  32. 32.

    Gao, W. et al. Comput. Aided Des. 69, 65–89 (2015).

    Article  Google Scholar 

  33. 33.

    Qi, Q. & Tao, F. IEEE Access 6, 3585–3593 (2018).

    Article  Google Scholar 

  34. 34.

    LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Hagedoorn, J., Link, A. N. & Vonortas, N. S. Res. Policy 29, 567–586 (2000).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. DebRoy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DebRoy, T., Mukherjee, T., Milewski, J.O. et al. Scientific, technological and economic issues in metal printing and their solutions. Nat. Mater. 18, 1026–1032 (2019). https://doi.org/10.1038/s41563-019-0408-2

Download citation

Further reading

Search

Quick links