Article | Published:

Shape-encoded dynamic assembly of mobile micromachines

Abstract

Field-directed and self-propelled colloidal assembly have been used to build micromachines capable of performing complex motions and functions. However, integrating heterogeneous components into micromachines with specified structure, dynamics and function is still challenging. Here, we describe the dynamic self-assembly of mobile micromachines with desired configurations through pre-programmed physical interactions between structural and motor units. The assembly is driven by dielectrophoretic interactions, encoded in the three-dimensional shape of the individual parts. Micromachines assembled from magnetic and self-propelled motor parts exhibit reconfigurable locomotion modes and additional rotational degrees of freedom that are not available to conventional monolithic microrobots. The versatility of this site-selective assembly strategy is demonstrated on different reconfigurable, hierarchical and three-dimensional micromachine assemblies. Our results demonstrate how shape-encoded assembly pathways enable programmable, reconfigurable mobile micromachines. We anticipate that the presented design principle will advance and inspire the development of more sophisticated, modular micromachines and their integration into multiscale hierarchical systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Any data supporting the findings of this study are available within the Article and its Supplementary Information and are available from the corresponding author upon reasonable request.

Code availability

The open-source and commercial software used for data analyses are referenced in the Methods.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Sitti, M. et al. Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103, 205–224 (2015).

  2. 2.

    Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).

  3. 3.

    Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

  4. 4.

    Sitti, M. Mobile Microrobotics (MIT Press, 2017).

  5. 5.

    Ceylan, H., Giltinan, J., Kozielski, K. & Sitti, M. Mobile microrobots for bioengineering applications. Lab Chip 17, 1705–1724 (2017).

  6. 6.

    Sitti, M. Miniature soft robots—road to the clinic. Nat. Rev. Mater. 3, 74–75 (2018).

  7. 7.

    Alapan, Y. et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3, eaar4423 (2018).

  8. 8.

    Yigit, B., Alapan, Y. & Sitti, M. Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms. Adv. Sci. 6, 1801837 (2019).

  9. 9.

    Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

  10. 10.

    Sing, C. E., Schmid, L., Schneider, M. F., Franke, T. & Alexander-Katz, A. Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc. Natl Acad. Sci. USA 107, 535–540 (2010).

  11. 11.

    Martinez-Pedrero, F., Ortiz-Ambriz, A., Pagonabarraga, I. & Tierno, P. Colloidal microworms propelling via a cooperative hydrodynamic conveyor belt. Phys. Rev. Lett. 115, 138301 (2015).

  12. 12.

    Tasci, T. O., Herson, P. S., Neeves, K. B. & Marr, D. W. M. Surface-enabled propulsion and control of colloidal microwheels. Nat. Commun. 7, 10225 (2016).

  13. 13.

    Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

  14. 14.

    Aubret, A., Youssef, M., Sacanna, S. & Palacci, J. Targeted assembly and synchronization of self-spinning microgears. Nat. Phys. 14, 1114–1118 (2018).

  15. 15.

    Cademartiri, L. & Bishop, K. J. M. Programmable self-assembly. Nat. Mater. 14, 2–9 (2015).

  16. 16.

    Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).

  17. 17.

    Wang, W., Giltinan, J., Zakharchenko, S. & Sitti, M. Dynamic and programmable self-assembly of micro-rafts at the air–water interface. Sci. Adv. 3, e1602522 (2017).

  18. 18.

    Miyashita, S., Diller, E. & Sitti, M. Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions. Int. J. Rob. Res. 32, 591–613 (2013).

  19. 19.

    Erb, R. M., Son, H. S., Samanta, B., Rotello, V. M. & Yellen, B. B. Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457, 999–1002 (2009).

  20. 20.

    Shields, C. W.IV et al. Field-directed assembly of patchy anisotropic microparticles with defined shape. Soft Matter 9, 9219–9229 (2013).

  21. 21.

    Demirörs, A. F., Pillai, P. P., Kowalczyk, B. & Grzybowski, B. A. Colloidal assembly directed by virtual magnetic moulds. Nature 503, 99–103 (2013).

  22. 22.

    Demirörs, A. F., Courty, D., Libanori, R. & Studart, A. R. Periodically microstructured composite films made by electric- and magnetic-directed colloidal assembly. Proc. Natl Acad. Sci. USA 113, 4623–4628 (2016).

  23. 23.

    Zhang, J., Yan, J. & Granick, S. Directed self-assembly pathways of active colloidal clusters. Angew. Chem. Int. Ed. 55, 5166–5169 (2016).

  24. 24.

    Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016).

  25. 25.

    Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491, 578–581 (2012).

  26. 26.

    Snezhko, A. Complex collective dynamics of active torque-driven colloids at interfaces. Curr. Opin. Colloid Interface Sci. 21, 65–75 (2016).

  27. 27.

    Ma, F., Wang, S., Wu, D. T. & Wu, N. Electric-field-induced assembly and propulsion of chiral colloidal clusters. Proc. Natl Acad. Sci. USA 112, 6307–6312 (2015).

  28. 28.

    Ni, S., Marini, E., Buttinoni, I., Wolf, H. & Isa, L. Hybrid colloidal microswimmers through sequential capillary assembly. Soft Matter 13, 4252–4259 (2017).

  29. 29.

    Vizsnyiczai, G. et al. Light controlled 3D micromotors powered by bacteria. Nat. Commun. 8, 15974 (2017).

  30. 30.

    Demirörs, A. F., Eichenseher, F., Loessner, M. J. & Studart, A. R. Colloidal shuttles for programmable cargo transport. Nat. Commun. 8, 1872 (2017).

  31. 31.

    Demirörs, A. F., Akan, M. T., Poloni, E. & Studart, A. R. Active cargo transport with Janus colloidal shuttles using electric and magnetic fields. Soft Matter 14, 4741–4749 (2018).

  32. 32.

    Voldman, J. Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 8, 425–454 (2006).

  33. 33.

    Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

  34. 34.

    Gangwal, S., Cayre, O. J., Bazant, M. Z. & Velev, O. D. Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 100, 058302 (2008).

  35. 35.

    Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

  36. 36.

    Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

  37. 37.

    Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

  38. 38.

    Liu, W., Halverson, J., Tian, Y., Tkachenko, A. V. & Gang, O. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 8, 867–873 (2016).

  39. 39.

    Brooks, A. M., Sabrina, S. & Bishop, K. J. M. Shape-directed dynamics of active colloids powered by induced-charge electrophoresis. Proc. Natl Acad. Sci. USA 115, E1090–E1099 (2018).

  40. 40.

    Alapan, Y. et al. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Contr. Robot. Auton. Syst. 2, 205–230 (2019).

  41. 41.

    Alapan, Y., Matsuyama, Y., Little, J. A. & Gurkan, U. A. Dynamic deformability of sickle red blood cells in microphysiological flow. Technology 4, 71–79 (2016).

  42. 42.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

  43. 43.

    Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

Download references

Acknowledgements

The authors thank V. Liimatainen for helping with editing the manuscript. Y.A. thanks the Alexander von Humboldt Foundation for a Humboldt Postdoctoral Research Fellowship. A.F.D. acknowledges the Swiss National Science Foundation for the Scientific Exchange Grant no. IZSEZ0_181526. This work is funded by the Max Planck Society.

Author information

Y.A., B.Y. and M.S. conceived the idea and designed the research with contributions from O.B. M.S. supervised the overall research. Y.A., B.Y., O.B. and A.F.D. designed and performed the experiments, and analysed the data. Y.A. and B.Y. wrote the paper. All authors discussed the results, and revised or commented on the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Metin Sitti.

Supplementary information

Supplementary Information

Supplementary video legends 1–8, Supplementary Notes 1–3, Supplementary Figs. 1–14, Supplementary references.

Supplementary Video 1

Assembly and translation of a compound microvehicle with magnetic actuators.

Supplementary Video 2

Pick-and-place manipulation of non-magnetic objects using reversible assembly.

Supplementary Video 3

Tuning coupling stiffness of the assembly by modulating dielectrophoretic interactions.

Supplementary Video 4

Shape-encoded assembly of magnetic microactuators.

Supplementary Video 5

Shape-encoded assembly of self-propelled microactuators.

Supplementary Video 6

Reconfigurable mobile micromachines.

Supplementary Video 7

Hierarchical assembly of mobile micromachines.

Supplementary Video 8

Three-dimensional (3D) microactuator manipulation and assembly.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Spatial encoding of DEP attraction sites by modulating the 3D geometry.
Fig. 2: Reversible assembly of magnetic microactuators with a non-magnetic body using DEP forces.
Fig. 3: Shape-encoded assembly of magnetic microactuators to a non-magnetic body fabricated with direct laser writing.
Fig. 4: Shape-encoded reconfigurable assembly of micromachines with self-propelled microactuators for frequency-tunable locomotion.
Fig. 5: Hierarchical assembly of multiple micromachines via shape-encoded DEP interactions.
Fig. 6: 3D manipulation of microactuators and assembly of micromachines.