Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te)

Abstract

Majorana quasiparticles in condensed matter are important for topological quantum computing1,2,3, but remain elusive. Vortex cores of topological superconductors may accommodate Majorana quasiparticles that appear as the Majorana bound state (MBS) at zero energy4,5. The iron-based superconductor Fe(Se,Te) possesses a superconducting topological surface state6,7,8,9 that was investigated by scanning tunnelling microscopy (STM) studies, which suggest such a zero-energy vortex bound state (ZVBS)10,11. Here we present ultrahigh energy-resolution spectroscopic imaging (SI)–STM to clarify the nature of the vortex bound states in Fe(Se,Te). We found the ZVBS at 0 ± 20 μeV, which constrained its MBS origin, and showed that some vortices host the ZVBS but others do not. We show that the fraction of vortices hosting the ZVBS decreases with increasing magnetic field and that local quenched disorders are not related to the ZVBS. Our observations elucidate the necessary conditions to realize the ZVBS, which paves the way towards controllable Majorana quasiparticles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quenched disorders in Fe(Se,Te).
Fig. 2: Vortex-core dependent bound states.
Fig. 3: Spatial correlations between the vortices and quenched disorders.
Fig. 4: Magnetic field dependence of the vortex lattice and the ZVBS.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    CAS  Google Scholar 

  2. 2.

    Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  Google Scholar 

  3. 3.

    Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).

    Article  Google Scholar 

  4. 4.

    Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  6. 6.

    Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).

    Article  Google Scholar 

  7. 7.

    Wu, X. et al. Topological characters in Fe(Te1−xSex) thin films. Phys. Rev. B 93, 115129 (2016).

    Article  Google Scholar 

  8. 8.

    Xu, G. et al. Topological superconductivity on the surface of Fe-based superconductors. Phys. Rev. Lett. 117, 047001 (2016).

    Article  Google Scholar 

  9. 9.

    Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    Article  Google Scholar 

  10. 10.

    Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Chen, M. et al. Discrete energy levels of Caroli–de Gennes–Matricon states in quantum limit in FeTe0.55Se0.45. Nat. Commun. 9, 970 (2018).

    Article  Google Scholar 

  12. 12.

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Kim, H. et al. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Sci. Adv. 4, eaar5251 (2018).

    Article  Google Scholar 

  15. 15.

    Hosur, P., Ghaemi, P., Mong, R. S. K. & Vishwanath, A. Majorana modes at the ends of superconductor vortices in doped topological insulators. Phys. Rev. Lett. 107, 097001 (2011).

    Article  Google Scholar 

  16. 16.

    Guan, S.-Y. et al. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2. Sci. Adv. 2, e1600894 (2016).

    Article  Google Scholar 

  17. 17.

    Iwaya, K. et al. Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2. Nat. Commun. 8, 976 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Rinott, S. et al. Tuning across the BCS–BEC crossover in the multiband superconductor Fe1+ySexTe1−x: an angle-resolved photoemission study. Sci. Adv. 3, e1602372 (2017).

    Article  Google Scholar 

  20. 20.

    Caroli, C., de Gennes, P. G. & Matricon, J. Bound fermion states on a vortex line in a type II superconductor. Phys. Lett. 9, 307–309 (1964).

    Article  Google Scholar 

  21. 21.

    Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).

    Article  Google Scholar 

  22. 22.

    Sun, H.-H. et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).

    Article  Google Scholar 

  23. 23.

    Machida, T., Kohsaka, Y. & Hanaguri, T. A scanning tunneling microscope for spectroscopic imaging below 90 mK in magnetic fields up to 17.5 T. Rev. Sci. Instrum. 89, 093707 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Yin, J.-X. et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nat. Phys. 11, 543–546 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Massee, F. et al. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te). Sci. Adv. 1, e1500033 (2015).

    Article  Google Scholar 

  26. 26.

    Liu, Q. et al. Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe. Phys. Rev. X 8, 041056 (2018).

    CAS  Google Scholar 

  27. 27.

    Hayashi, N., Isoshima, T., Ichioka, M. & Machida, K. Low-lying quasiparticle excitations around a vortex core in quantum limit. Phys. Rev. Lett. 80, 2921–2924 (1998).

    CAS  Article  Google Scholar 

  28. 28.

    Biswas, R. R. Majorana fermions in vortex lattices. Phys. Rev. Lett. 111, 136401 (2013).

    Article  Google Scholar 

  29. 29.

    Chiu, C.-K., Machida T., Huang Y., Hanaguri T. & Zhang F.-C. Scalable Majorana vortex modes in iron-based superconductors. Preprint at https://arxiv.org/abs/1904.13374 (2019).

  30. 30.

    Liu, T. & Franz, M. Electronic structure of topological superconductors in the presence of a vortex lattice. Phys. Rev. B 92, 134519 (2015).

    Article  Google Scholar 

  31. 31.

    Sun, Y. et al. Effects of annealing, acid and alcoholic beverages on Fe1+yTe0.6Se0.4. Supercond. Sci. Technol. 26, 015015 (2013).

    Article  Google Scholar 

  32. 32.

    Sun, Y. et al. Dynamics and mechanism of oxygen annealing in Fe1+yTe0.6Se0.4 single crystal. Sci. Rep. 4, 4585 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank C.-K. Chiu, A. Furusaki, P. A. Lee, D.-H. Lee, Y. Nagai and T. T. Ong for valuable comments and C. J. Butler for a critical reading. This work was partly supported by CREST project JPMJCR16F2 from the Japan Science and Technology Agency, Grants-in-Aid for Scientific Research (KAKENHI) (numbers 17H01141, 16H04024, 19H01843), a Grant-in-Aid for Young Scientists (KAKENHI) (number 19K14661), and Japan China Bilateral Joint Research Project by the Japan Society for the Promotion of Science (JSPS).

Author information

Affiliations

Authors

Contributions

T.M. carried out the experiments and the data analyses with assistance from Y.K. and T.H. Y.S., S.P., T.T., S.T. and T.S. grew single crystals. T.H. supervised the project. T.M. and T.H. wrote the manuscript.

Corresponding authors

Correspondence to T. Machida or T. Hanaguri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Supplementary Notes 1–7 and Supplementary References 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machida, T., Sun, Y., Pyon, S. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019). https://doi.org/10.1038/s41563-019-0397-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing