A map of the inorganic ternary metal nitrides


Exploratory synthesis in new chemical spaces is the essence of solid-state chemistry. However, uncharted chemical spaces can be difficult to navigate, especially when materials synthesis is challenging. Nitrides represent one such space, where stringent synthesis constraints have limited the exploration of this important class of functional materials. Here, we employ a suite of computational materials discovery and informatics tools to construct a large stability map of the inorganic ternary metal nitrides. Our map clusters the ternary nitrides into chemical families with distinct stability and metastability, and highlights hundreds of promising new ternary nitride spaces for experimental investigation—from which we experimentally realized seven new Zn- and Mg-based ternary nitrides. By extracting the mixed metallicity, ionicity and covalency of solid-state bonding from the density functional theory (DFT)-computed electron density, we reveal the complex interplay between chemistry, composition and electronic structure in governing large-scale stability trends in ternary nitride materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A map of the inorganic ternary metal nitrides, coloured to represent the thermodynamic stability of the ternary nitride with the lowest formation energy.
Fig. 2: Experimental realization of seven predicted Zn- and Mg-based ternary nitrides.
Fig. 3: Thermochemical origins of ternary nitride stability.
Fig. 4: Electronic structure origins of ternary nitride stability.

Data availability

We have made the structures and energies of the newly predicted nitrides freely available on the Materials Project (www.materialsproject.org) for readers interested in further investigation. All other data are available from the corresponding authors on request.


  1. 1.

    DiSalvo, F. J. & Clarke, S. J. Ternary nitrides: a rapidly growing class of new materials. Curr. Opin. Solid State Mater. Sci. 2, 241–249 (1996).

    Article  Google Scholar 

  2. 2.

    Höhn, P. & Niewa, R. Nitrides of non-main group elements. Handb. Solid State Chem. 1, 251–359 (2017).

    Article  Google Scholar 

  3. 3.

    Tareen, A. K., Priyanga, G. S., Behara, S., Thomas, T. & Yang, M. Mixed ternary transition metal nitrides: a comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Prog. Solid State Chem. 53, 1–26 (2018).

    Article  Google Scholar 

  4. 4.

    Amano, H., Kito, M., Hiramatsu, K. & Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).

    CAS  Article  Google Scholar 

  5. 5.

    Pust, P. et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material. Nat. Mater. 13, 891–896 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Vepřek, S. & Reiprich, S. A concept for the design of novel superhard coatings. Thin Solid Films 268, 64–71 (1995).

    Article  Google Scholar 

  7. 7.

    Jacobsen, C. J. H. Novel class of ammonia synthesis catalysts. Chem. Commun. 2000, 1057–1058 (2000).

    Article  Google Scholar 

  8. 8.

    Coey, J. & Sun, H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in ammonia. J. Magn. Magn. Mater. 87, L251–L254 (1990).

    CAS  Article  Google Scholar 

  9. 9.

    Balbarin, V., Dover, R. V. & Disalvo, F. The high temperature preparation and property measurements of CaTaN2: a ternary superconducting nitride. J. Phys. Chem. Solids 57, 1919–1927 (1996).

    CAS  Article  Google Scholar 

  10. 10.

    Lee, K., Kim, S. W., Toda, Y., Matsuishi, S. & Hosono, H. Dicalcium nitride as a two-dimensional electride with an anionic electron layer. Nature 494, 336–340 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Burton, L. A., Ricci, F., Chen, W., Rignanese, G.-M. & Hautier, G. High-throughput identification of electrides from all known inorganic materials. Chem. Mater. 30, 7521–7526 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Huang, H., Jin, K.-H. & Liu, F. Alloy engineering of topological semimetal phase transition in MgTa2−xNbxN3. Phys. Rev. Lett. 120, 136403 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Zakutayev, A. Design of nitride semiconductors for solar energy conversion. J. Mater. Chem. A 4, 6742–6754 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Mori-Sánchez, P. et al. Origin of the low compressibility in hard nitride spinels. Phys. Rev. B 68, 064115 (2003).

    Article  Google Scholar 

  15. 15.

    Elder, S. H., Disalvo, F. J., Topor, L. & Navrotsky, A. Thermodynamics of ternary nitride formation by ammonolysis: application to lithium molybdenum nitride (LiMoN2), sodium tungsten nitride (Na3WN3), and sodium tungsten oxide nitride (Na3WO3N). Chem. Mater. 5, 1545–1553 (1993).

    CAS  Article  Google Scholar 

  16. 16.

    Mchale, J. M., Navrotsky, A., Kowach, G. R., Balbarin, V. E. & Disalvo, F. J. Energetics of ternary nitrides: Li−Ca−Zn−N and Ca−Ta−N systems. Chem. Mater. 9, 1538–1546 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Jain, A, Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Collins, C. et al. Accelerated discovery of two crystal structure types in a complex inorganic phase field. Nature 546, 280–284 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Gautier, R. et al. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 7, 308–316 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 3762–3767 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014).

    Article  Google Scholar 

  23. 23.

    Jain, A., Hautier, G., Ong, S. P. & Persson, K. New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J. Mater. Res. 31, 977–994 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Isayev, O. et al. Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem. Mater. 27, 735–743 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Hoffmann, R. How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. 26, 846–878 (1987).

    Article  Google Scholar 

  26. 26.

    Hinuma, Y. et al. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis. Nat. Commun. 7, 11962 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Gharavi, M. A., Armiento, R., Alling, B. & Eklund, P. Theoretical study of phase stability, crystal and electronic structure of MeMgN2 (Me = Ti, Zr, Hf) compounds. J. Mater. Sci. 53, 4294–4305 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Ching, W. Y., Mo, S.-D., Tanaka, I. & Yoshiya, M. Prediction of spinel structure and properties of single and double nitrides. Phys. Rev. B 63, 064102 (2001).

    Article  Google Scholar 

  29. 29.

    Sarmiento-Pérez, R., Cerqueira, T. F. T., Körbel, S., Botti, S. & Marques, M. A. L. Prediction of stable nitride perovskites. Chem. Mater. 27, 5957–5963 (2015).

    Article  Google Scholar 

  30. 30.

    Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Sun, W. et al. Thermodynamic routes to novel metastable nitrogen-rich nitrides. Chem. Mater. 29, 6936–6946 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source Python library for materials analysis. Comp. Mater. Sci. 68, 314–319 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  34. 34.

    Kemp, C. & Tenenbaum, J. B. The discovery of structural form. Proc. Natl Acad. Sci. USA 105, 10687–10692 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    Johnson, S. C. Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967).

    CAS  Article  Google Scholar 

  36. 36.

    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857 (1971).

    Article  Google Scholar 

  37. 37.

    Pettifor, D. G. The structures of binary compounds. I. Phenomenological structure maps. J. Phys. C: Solid State Phys. 19, 285–313 (1986).

    CAS  Article  Google Scholar 

  38. 38.

    Sun, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016).

    Article  Google Scholar 

  39. 39.

    Bartel, C. J. et al. Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nat. Commun. 9, 4168 (2018).

    Article  Google Scholar 

  40. 40.

    Choi, J. & Gillan, E. G. Solvothermal metal azide decomposition routes to nanocrystalline metastable nickel, iron, and manganese nitrides. Inorg. Chem. 48, 4470–4477 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    Caskey, C. M., Richards, R. M., Ginley, D. S. & Zakutayev, A. Thin film synthesis and properties of copper nitride, a metastable semiconductor. Mater. Horiz. 1, 424–430 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Bikowski, A. et al. Design of metastable tin titanium nitride semiconductor alloys. Chem. Mater. 29, 6511–6517 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Arca, E. et al. Redox-mediated stabilization in zinc molybdenum nitrides. J. Am. Chem. Soc. 140, 4293–4301 (2018).

    CAS  Article  Google Scholar 

  44. 44.

    Horvath-Bordon, E. et al. High-pressure chemistry of nitride-based materials. Chem. Soc. Rev. 35, 987–1014 (2006).

    CAS  Article  Google Scholar 

  45. 45.

    Amsler, M., Hegde, V. I., Jacobsen, S. D. & Wolverton, C. Exploring the high-pressure materials genome. Phys. Rev. X 8, 041021 (2018).

    CAS  Google Scholar 

  46. 46.

    Yang, M. et al. Strong optical absorption in CuTaN2 nitride delafossite. Energy Environ. Sci. 6, 2994 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).

    Article  Google Scholar 

  48. 48.

    Kuech, T. F., Babcock, S. E. & Mawst, L. Growth far from equilibrium: examples from III-V semiconductors. Appl. Phys. Rev. 3, 040801 (2016).

    Article  Google Scholar 

  49. 49.

    Lambrecht, W. R. L. & Punya, A. in III-Nitride Semiconductors and their Modern Devices (ed. Gil, B.) 519–585 (Oxford Univ. Press, 2013).

  50. 50.

    Veal, T. D. et al. Band gap dependence on cation disorder in ZnSnN2 solar absorber. Adv. Energy Mater. 5, 1501462 (2015).

    Article  Google Scholar 

  51. 51.

    Anderson, W. P., Burdett, J. K. & Czech, P. T. What is the metallic bond? J. Am. Chem. Soc. 116, 8808–8809 (1994).

    CAS  Article  Google Scholar 

  52. 52.

    Walsh, A., Sokol, A. A., Buckeridge, J., Scanlon, D. O. & Catlow, C. R. A. Oxidation states and ionicity. Nat. Mater. 17, 958–964 (2018).

    CAS  Article  Google Scholar 

  53. 53.

    van Arkel, A. E. Molecules and crystals in inorganic chemistry. J. Chem. Educ. 34, 417 (1957).

    Google Scholar 

  54. 54.

    Etourneau, J., Portier, J. & Ménil, F. The role of the inductive effect in solid state chemistry: how the chemist can use it to modify both the structural and the physical properties of the materials. J. Alloys Compd. 188, 1–7 (1992).

    CAS  Article  Google Scholar 

  55. 55.

    Gregory, D. H. Structural families in nitride chemistry. J. Chem. Soc. Dalton Trans. 1999, 259–270 (1999).

    Article  Google Scholar 

  56. 56.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  57. 57.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  58. 58.

    Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comp. Mater. Sci. 50, 2295–2310 (2011).

    CAS  Article  Google Scholar 

  59. 59.

    Ong, S. P. et al. The materials application programming interface (API): a simple, flexible and efficient API for materials data based on REpresentational State transfer (REST) principles. Comp. Mater. Sci. 97, 209–215 (2015).

    Article  Google Scholar 

  60. 60.

    Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).

    Article  Google Scholar 

  61. 61.

    Scerri, E. R. in The Periodic Table: Into the 21st Century (eds Rouvray, D. and King, B.) 142–160 (Science Research, 2004).

  62. 62.

    Bar-Joseph, Z., Gifford, D. K. & Jaakkola, T. S. Fast optimal leaf ordering for hierarchical clustering. Bioinformatics 17, S22–S29 (2001).

    Article  Google Scholar 

  63. 63.

    Bhadram, V. S., Kim, D. Y. & Strobel, T. A. High-pressure synthesis and characterization of incompressible titanium pernitride. Chem. Mater. 28, 1616–1620 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    Niwa, K. et al. Highly coordinated iron and cobalt nitrides synthesized at high pressures and high temperatures. Inorg. Chem. 56, 6410–6418 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    Yu, S. et al. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–nitrogen MgxNy phases under high pressure. J. Phys. Chem. C 121, 11037–11046 (2017).

    CAS  Article  Google Scholar 

  66. 66.

    Bykov, M. et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun. 9, 2756 (2018).

    CAS  Article  Google Scholar 

  67. 67.

    Manz, T. A. & Limas, N. G. Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology. RSC Adv. 6, 47771–47801 (2016).

    CAS  Article  Google Scholar 

  68. 68.

    Manz, T. A. Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders. RSC Adv. 7, 45552–45581 (2017).

    CAS  Article  Google Scholar 

  69. 69.

    Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    CAS  Article  Google Scholar 

Download references


Funding for this study was provided by the US Department of Energy, Office of Science, Basic Energy Sciences, under contract no. UGA-0-41029-16/ER392000 as a part of the Department of Energy Energy Frontier Research Center for Next Generation of Materials Design: Incorporating Metastability. This research used resources of the Center for Functional Nanomaterials, which is a US Department of Energy Office of Science Facility, at Brookhaven National Laboratory under contract no. DE-SC0012704. This work also used computational resources sponsored by the Department of Energy’s Office of Energy Efficiency and Renewable Energy, located at NREL. C.J.B. and A.M.H. acknowledge support in part from the Research Corporation for Science Advancement through the Scialog: Advanced Energy Storage award programme. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. W.S. thanks S. Y. Chan and N. U. Gulls for discussions and support.

Author information




W.S., B.O., A.M.H., S.L. and G.C. performed ternary nitride structure prediction; W.S., C.J.B., A.M.H. and S.L. computed phase stability; W.S. constructed the map; E.A., S.R.B., B.M., J.T., W.T. and A.Z. synthesized ternary nitride thin films; synchrotron XRD characterization was performed by B.-R.C., M.F.T. and L.T.S.; W.S., C.J.B., A.M.H. and G.C. performed the metallicity, ionicity and covalency analysis. W.S., C.J.B., A.M.H. and G.C. wrote the manuscript, with contributions and revisions from all authors.

Corresponding authors

Correspondence to Wenhao Sun or Aaron M. Holder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–9, Supplementary Figs. 1–14, Supplementary Table 1, Supplementary ref. 1.

Supplementary Interactive Map

Compressed interactive HTML file of the map shown in Figure 1. When decompressed, and a particular ternary nitride space selected, a ternary phase diagram is presented along with a table of calculated stable and metastable compounds, their formation enthalpies, energies with respect to the convex hull and, for metastable compounds, their decomposition products and the nitrogen chemical potentials or pressures at which they can be stabilized.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Bartel, C.J., Arca, E. et al. A map of the inorganic ternary metal nitrides. Nat. Mater. 18, 732–739 (2019). https://doi.org/10.1038/s41563-019-0396-2

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing