Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets

This article has been updated

Abstract

The magnetic interfacial Dzyaloshinskii–Moriya interaction (DMI) in multilayered thin films can lead to chiral spin states, which are of paramount importance for future spintronic technologies1,2. Interfacial DMI typically manifests as an intralayer interaction, mediated via a paramagnetic heavy metal in systems lacking inversion symmetry3. Here we show that, by designing synthetic antiferromagnets with canted magnetization states4,5, it is also possible to observe direct evidence of the interfacial interlayer DMI at room temperature. The interlayer DMI breaks the symmetry of the magnetic reversal process via the emergence of non-collinear spin states, which results in chiral exchange-biased hysteresis loops. The spin chiral interlayer interactions reported here are expected to manifest in a range of multilayered thin-film systems, opening up as yet unexplored avenues for the development and exploitation of chiral effects in magnetic heterostructures6,7,8.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Interlayer DMI investigations in canted SAFs.
Fig. 2: Chiral exchange bias due to the interlayer DMI.
Fig. 3: Bias field dependence on CoFeB thickness.
Fig. 4: Emergence of spin modulations.

Data availability

All data associated to this publication is available via Enlighten, the University of Glasgow public repository. All metadata for this publication is available via the following link: https://doi.org/10.5525/gla.researchdata.787.

Code availability

The atomistic and macrospin Monte Carlo codes used for this study are available from the corresponding authors on reasonable request.

Change history

  • 24 June 2019

    In the original version of this article originally published, an oversight during the production process meant that ref. 16 was not updated from the preprint version; this has now been amended and the updated reference reads ‘Han, D.-S. Long-range chiral exchange interaction in synthetic antiferromagnets. Nat. Mater. https://doi.org/10.1038/s41563-019-0370-z (2019)’.

References

  1. 1.

    Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 16044 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D 50, 363001 (2017).

    Article  Google Scholar 

  3. 3.

    Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).

    Article  Google Scholar 

  4. 4.

    Ummelen, F. C. et al. Controlling the canted state in antiferromagnetically coupled magnetic bilayers close to the spin reorientation transition. Appl. Phys. Lett. 110, 102405 (2017).

    Article  Google Scholar 

  5. 5.

    Fernandez-Pacheco, A. et al. Dynamic selective switching in antiferromagnetically-coupled bilayers close to the spin reorientation transition. Appl. Phys. Lett. 105, 092408 (2014).

    Article  Google Scholar 

  6. 6.

    Lavrijsen, R. et al. Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493, 647–650 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Fernández-Pacheco, A. et al. Three dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017).

    Article  Google Scholar 

  8. 8.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Jué, E. et al. Chiral damping of magnetic domain walls. Nat. Mater. 15, 272–277 (2015).

    Article  Google Scholar 

  12. 12.

    Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Levy, P. M. & Fert, A. Anisotropy induced by nonmagnetic impurities in Cu Mn spin-glass alloys. Phys. Rev. B 23, 4667–4690 (1981).

    CAS  Article  Google Scholar 

  14. 14.

    Crépieux, A. & Lacroix, C. Dzyaloshinsky–Moriya interactions induced by symmetry breaking at a surface. J. Magn. Magn. Mater. 182, 341–349 (1998).

    Article  Google Scholar 

  15. 15.

    Vedmedenko, E. Y., Arregi, J. A., Riego, P. & Berger, A. Interlayer Dzyaloshinskii–Moriya interactions. Preprint at https://arxiv.org/abs/1803.10570 (2018).

  16. 16.

    Han, D.-S. et al. Long-range chiral exchange interaction in synthetic antiferromagnets. Nat. Mater. https://doi.org/10.1038/s41563-019-0370-z (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Dupé, B., Hoffmann, M., Paillard, C. & Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 5, 4030 (2014).

    Article  Google Scholar 

  18. 18.

    Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015).

    Article  Google Scholar 

  19. 19.

    Ives, A. J. R., Bland, J. A. C., Hicken, R. J. & Daboo, C. Oscillatory biquadratic coupling in Fe/Cr/Fe(001). Phys. Rev. B 55, 12428–12438 (1997).

    CAS  Article  Google Scholar 

  20. 20.

    Han, D. S. et al. Asymmetric hysteresis for probing Dzyaloshinskii–Moriya interaction. Nano Lett. 16, 4438–4446 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Pizzini, S. et al. Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures. Phys. Rev. Lett. 113, 047203 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Lee, J.-H. et al. Domain imaging during soliton propagation in a 3D magnetic ratchet. SPIN 03, 1340013 (2013).

    Article  Google Scholar 

  23. 23.

    Kisielewski, M. et al. Drastic changes of the domain size in an ultrathin magnetic film. J. Appl. Phys. 93, 6966–6968 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    Kimura, T., Lashley, J. C. & Ramirez, A. P. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Phys. Rev. B 73, 220401 (2006).

    Article  Google Scholar 

  25. 25.

    Ferré, J. et al. Magnetization-reversal processes in an ultrathin Co/Au film. Phys. Rev. B 55, 15092–15102 (1997).

    Article  Google Scholar 

  26. 26.

    Liu, Y., Zhou, B. & Zhu, J.-G. Field-free magnetization switching by utilizing the Spin Hall effect and interlayer exchange coupling of iridium. Sci. Rep. 9, 325 (2019).

    Article  Google Scholar 

  27. 27.

    Romming, N. et al. Competition of Dzyaloshinskii–Moriya and higher-order exchange interactions in Rh/Fe atomic bilayers on Ir(111). Phys. Rev. Lett. 120, 207201 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Shahbazi, K. et al. Domain-wall motion and interfacial Dzyaloshinskii–Moriya interactions in Pt/Co /Ir(t Ir)/Ta multilayers. Phys. Rev. B 99, 094409 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Di, K. et al. Asymmetric spin–wave dispersion due to Dzyaloshinskii–Moriya interaction in an ultrathin Pt/CoFeB film. Appl. Phys. Lett. 106, 052403 (2015).

    Article  Google Scholar 

  30. 30.

    Wiese, N. et al. Antiferromagnetically coupled CoFeB/Ru/CoFeB trilayers. Appl. Phys. Lett. 85, 2020 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    Lavrijsen, R. et al. Tuning the interlayer exchange coupling between single perpendicularly magnetized CoFeB layers. Appl. Phys. Lett. 100, 052411 (2012).

    Article  Google Scholar 

  32. 32.

    Raanaei, H. et al. Imprinting layer specific magnetic anisotropies in amorphous multilayers. J. Appl. Phys. 106, 023918 (2009).

    Article  Google Scholar 

  33. 33.

    Kang, S. P. et al. The spin structures of interlayer coupled magnetic films with opposite chirality. Sci. Rep. 8, 2361 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Eyrich, C. et al. Exchange stiffness in thin film Co alloys. J. Appl. Phys. 111, 07C919 (2012).

    Article  Google Scholar 

  35. 35.

    Perini, M. et al. Domain walls and Dzyaloshinskii–Moriya interaction in epitaxial Co/Ir(111) and Pt/Co/Ir(111). Phys. Rev. B 97, 184425 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with N. Jaouen, S. Stanescu and A. Hierro-Rodríguez, as well as experimental support from D. Sanz Hernández, A. Welbourne, P. Seem and I. Farrer. A.F.-P. acknowledges funding from an EPSRC Early Career Fellowship EP/M008517/1 and from the Winton Program for the Physics of Sustainability. E.V. acknowledges support from the Horizon 2020 research and innovation programme under grant agreement no. 665095 (MAGicSky), and D.P. and R.P.C. acknowledge from the Templeton World Charity Foundation. F.U. acknowledges support from the Erasmus Mobility programme.

Author information

Affiliations

Authors

Contributions

A.F.-P. designed and carried out the experiments, grew the samples, analysed the data, carried out the Monte Carlo macrospin simulations and wrote the manuscript. E.V. performed the analytical calculations, carried out the atomistic Monte Carlo simulations and analysed the data derived from them, and wrote the manuscript. F.U. grew samples and analysed data. R.M. contributed to the experimental characterization of the samples. All authors discussed and contributed to the interpretation of the results, as well as to the writing of the manuscript.

Corresponding authors

Correspondence to Amalio Fernández-Pacheco or Elena Vedmedenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Supplementary Figs. 1–9, Supplementary references 1–15

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández-Pacheco, A., Vedmedenko, E., Ummelen, F. et al. Symmetry-breaking interlayer Dzyaloshinskii–Moriya interactions in synthetic antiferromagnets. Nat. Mater. 18, 679–684 (2019). https://doi.org/10.1038/s41563-019-0386-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing